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Abstract

Different sequences of the same medical exam, as for instance MRI’s
T1w and Dyn, display different image features that enable the segmen-
tation of specific objects to be easier in one over the other. In breast
cancer research, T1w addresses better the diverse breast anatomy, while
Dyn outshines over lesion segmentation. The present study proposes a
methodology to tackle an unapproached task, in order to facilitate the vol-
umetric alignment of data retrieved from T1w and Dyn sequences, lever-
aging breast surface segmentation and subsequent registration. The pro-
cess seems to have promising results as average two-dimensional contour
distances are at sub-voxel resolution and visual results seem well within
range for the valid transference of other segmented or annotated struc-
tures.

1 Introduction

Magnetic Resonance Imaging (MRI) is often performed on breast cancer
patients and allows 3D image reconstruction of the breast as it captures
regular interval slices from the patient’s torso. Image processing meth-
ods are often used to analyse these challenging MRI sequences, namely
focusing on T1-weighted (T1w) and MRI Dynamic Contrast-Enhanced
(MRI-DCE, Dyn henceforth). Specific objects in the torso are enhanced
on particular sequences and so, it stands to reason focusing the develop-
ment efforts towards dealing with the clearer options first.

The present study is an adaptation of [5], which aims to automatically
obtain the breast anterior surface on T1w and on Dyn at instant zero (Sd0).
Also, to join lesion annotations with the remaining anatomy reference
points, the segmented surfaces from T1w and Sd0 are registered using a
simplification of the Iterative Closest Point algorithm (ICP).

1.1 Related Work

Across multiple cancer specificities, and breast cancer research in partic-
ular, there is a significant amount of data and methods associated with
segmentation and multi-modal registration or fusion.

Segmentation approaches range from Maximum a Posteriori Estima-
tion approaches, Expectation Maximization–Markov Random Field tech-
niques and Atlas-based approaches to U-Net methodologies. However,
research does not focus as much on T1w or T2w sequences as it does on
Dyn, due to the lower difficulty of lesion segmentation on that sequence.
Furthermore, those segmentation procedures are largely directed only to-
wards the lesion and generally customarily the breast surface.

Breast multi-modal registration tasks generally involve fusing the Dyn
sequences to other entirely different modalities, such as PET and CT [1],
or between the 3D three-dimensional (3D) MRI and 2D data such as X-
ray Mammography [3]. There are also human biology based works that
focus on intra-modality alignment, commonly associated with the mon-
itoring of some disease’s progression, as usually found applied to brain
CT scans [4]. Nevertheless, some similar work is also done with breast
Dyn sequences [2].

However, this paper seems to be among the earlier work concern-
ing MRI intra-patient registration between T1w and Dyn or derived sub-
sequences, as in Sd0. Hence, we start studying low complexity approaches
such as edge detection, contour refinement and rigid registration.

2 Dataset

The dataset used was provided by the Redacted project and consists of T1-
weighted thoracic MRI exams (T1w) from 27 breast cancer patients, ob-
tained with a Philips Ingenia 3.0T MRI scanner. Each exam comprises 60

gray-scale axial images, with the approximate dimensions of 3 mm thick-
ness and resolution of 720×720 pixels (0.3-0.5 mm/pixel). Additionally,
each T1w acquisition has a corresponding dynamic contrast study (Dyn)
that includes the sequence data at the instant zero (Sd0). In turn, this se-
quence comprises 300 gray-scale sagittal images, with 1 mm thickness
and a resolution of 300× 300 pixels (0.5-0.6 mm/pixel), in a narrower
field of view.

Due to the specific ease of annotating, the T1w also has available
binary masks for the breast and the Sd0 has the lesion we aim to transport
(Figure 1). All annotations were manually performed by experts with
more than 5 years of experience.

(a) T1w breast (b) T1w breast perimeter (c) Sd0 Lesion

Figure 1: Annotation Images

3 Methodology

The tasks intended to be tackled include T1w and Sd0 sequences’ segmen-
tation and subsequent registration of both segmented breast surfaces. For
the segmentation task, T1w and Sd0 volumes are individually processed
using the same pipeline, despite their difference in field of view, voxel
resolution and extent. Sd0 volumes are rotated in 90 degrees, so that both
anatomical volumes face the same direction, on the axial view.

3.1 Breast Surface Segmentation

The approach tries to enclose the breast surface in a solid region, ignoring
internal structures when possible, enabling a smooth generation of the
breast surface. The segmentation pipeline is shown in Figure 2.

Figure 2: Segmentation Pipeline for one MRI sequence

The initial step is a Canny detector for obtaining the salient volume
boundaries. This is performed in both coronal and sagittal directions (Fig-
ures 3a, 3b), to compensate potential gaps in perspective, namely hidden
information of the inframammary folds. The edge maps are joined (Fig-
ure 3c) and closed with a 3D sphere. Flood-filling operations ensue: along
the sagittal perspective, then along the coronal and again along the sagit-
tal view (Figure 3d). Next we applied dilation filtering and a Chan-Vese
level-set block, over the coronal view. This processing is done individ-
ually on separated left and right breast images, until a single object is
found on the filling step. This avoids fusing the breasts on the active
contour step. Lastly, the surface perimeter is then extracted (Figure 3e).
An example of the 3D segmentation extents for a full patient is shown in
Figure 4.

3.2 Registration

First we convert the coordinates of the point clouds to real world values
(voxel resolution is applied to the point list). A point cloud is rotated
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Figure 3: Pipeline intermediate results for Sd0

so both (Sd0 and T1w) face the same orientation. The point clouds are
subsequently processed by an ICP algorithm, that imposes a no rotation
restriction, as both sequences of data are captured during the same session
and with the patient lying down, trying not to move. This will enable to
accurately convert the desired spatial data - in this case the lesion’s points
acquired on the Sd0 - and place it on the respective location, among the
structure data on the base view (here, the T1w). An example of the process
is shown in Figure 5.

Figure 4: T1w Segmentation output (red) against GT contour (green)

(a) Pre-Registred (b) Registred (c) Registred

Figure 5: Registration step. T1w (red), Registered Sd0 (blue)

3.3 Evaluation metrics

For segmentation we can only fairly compare the T1w segmentation with
the T1wGT , as there is no breast GT mask for Sd0. Furthermore, it should
only be done in one direction, as T1wGT’s perimeter also includes the
posterior breast contour (Fig 1b). Registration wise, the metric is ob-
tained only from the aligned surfaces as using the T1wGT contour could
negatively impact the registration process due to its extensive perimeter.

In neither case, area metrics can be provided as the segmented frontal
breast surfaces are not comparable to the solid T1wGT objects. Hence,
the metrics performed are Average Distance (one way) and AD (bidirec-
tional). Extreme valued cases across all patients are also shown.

4 Results and Discussion

First, we observed an increasing surface distance as we reached the ver-
tical extremities (Figure 4). It was expected as less homogeneous inten-
sities are found in the top and bottom slices. In turn, this influences the
segmentation method which operates on the sagittal and coronal perspec-
tives and slightly expands the real boundaries to obtain a smoother, closed
result.

The registration process of the segmented surfaces (Figure 5) presents
acceptable alignments, where larger mismatches may be attributable to
segmentation errors at the vertical extremities, in particular of the T1w
surface. The breast shape acquired from both sequences seems to match
enough to conduct reliable registration, producing an average error around
the central slices of approximately the 4mm.

When comparing to T1wGT , the Sd0 follows closely the outer skin in-
terface, while the T1w segmentation follows the inner one, in many cases
having the manual annotation averaging between both.

Table 1 presents numerical evidence of the results. The 3D T1w seg-
mentation results point to about a 4 to 7 pixel error, which is a good re-
sult, considering some of the method’s limitations and the reliability of
the dataset.

Table 1: Segmentation and registration 3D errors

Min Avg. Dist. AD Max

T1w to
T1wGT

1.23 2.20 (0.47) n.a. 3.05

Sd0 to T1w 1.75 2.91(1.30)
2.57 (1.01)

6.17
T1w to Sd0 1.37 1.77 (0.47) 3.76

All metrics in mm (min is best). Avg. Dist. and AD present values averaged across all patients, and

respective standard deviations in parenthesis.

On the registration side, a trend of larger Sd0 to T1w error was an-
ticipated and verified, as the Sd0 has roughly 3 times more slices than
T1w, for the same vertical extent. General errors are quite low consid-
ering that T1w has a slice thickness of 3 mm. The Avg. Dist. values
are close, confirming that both segmentation surfaces have fairly simi-
lar shapes and extents. This validates the balanced method performance
across both sequences. This also argues for the capacity of this ICP setup
for the intended objective. Finally, and naturally, AD middles the Average
Distance of each sequence, leaning more on the Sd0 to T1w direction, as
Sd0 tends to have more points on the clouds than T1w.

5 Conclusion

An early pipeline for the untried fusion between the breast outer contour
of T1w and Sd0 MRI sequences has been proposed. The main objective
was to unify both sequences under the same orientation and 3D space, to
combine both sources of annotations.

For this, a breast surface segmentation plus registration approach was
employed. Both visual and quantitative outcomes show encouraging re-
sults, managing average contour distances below T1w’s slice thickness
value. Although the approach may require further adjustments for an at-
las development and other goals, the proposed pipeline seems to fulfill the
purpose of joining the annotations of these two sequences.
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