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Abstract

Fingerprint presentation attack detection (PAD) methods present a stun-
ning performance in current literature. However, the fingerprint PAD gen-
eralisation problem is still an open challenge requiring the development
of methods able to cope with sophisticated and unseen attacks as our even-
tual intruders become more capable. This work addresses this problem by
applying a regularisation technique based on an adversarial training and
representation learning specifically designed to improve the PAD gener-
alisation capacity of the model to an unseen attack. The application of the
adversarial training methodology is evaluated in two different scenarios:
i) a handcrafted feature extraction method combined with a Multilayer
Perceptron (MLP); and ii) an end-to-end solution using a Convolutional
Neural Network (CNN). The experimental results demonstrated that the
adopted regularisation strategies equipped the neural networks with in-
creased PAD robustness. The CNN models’ capacity for attacks detec-
tion in the unseen-attack scenario was particularly improved, showing re-
markable improved APCER error rates when compared to state-of-the-art
methods in similar conditions.

1 Introduction
Fingerprint presentation attack detection (FPAD) methods have been de-
veloped to overcome the vulnerability of fingerprint recognition systems
(FRS) to spoofing. However, most of the traditional approaches have been
quite optimistic about the behavior of the intruder, assuming the use of a
previously known type of attack sample. This assumption has led to the
overestimation of the performance of the methods, using both live and
spoof samples to train the predictive models and evaluate each type of
fake samples individually [10].

In this work, the FPAD generalisation problem is addressed by means
of a regularisation technique designed to improve the generalisation ca-
pacity to unseen attacks in which the proposed model jointly learns the
representation and the classifier from the data, while explicitly imposing
invariance to the presentation attack instrument (PAI) types aka, ‘PAI-
species’, in the high-level representations for a robust PAD method. The
contributions of this work are then two-fold: 1) application of the ad-
versarial training concept to the generalisation to unseen attacks prob-
lem in FPAD; and 2) evaluation of the adversarial training methodology
in: i) combination of handcrafted features with a Multilayer Perceptron
(MLP); ii) a Convolutional Neural Network (CNN) end-to-end solution.
In this paper, this section summarises the proposed work and how it ad-
dresses the research question posed, section 2 presents the methodology,
section 3 describes the experimental setup, section 4 presents the results
and discussion and finally section 5 concludes the work.

2 Proposed Methodology
This work applies the methodology from Ferreira et al. [1] which was
adopted in Pereira et al. [9] with the appropriate adjustments. The origi-
nal method was presented by Ferreira et al. [2] in the context of sign lan-
guage recognition, in an approach that builds on those initially introduced
by Ganin et al. [4], for domain adaptation, and Feutry et al. [3], to learn
anonymized representations. The underlying idea behind this approach is
that, in order to generalise well to unseen attacks, the model should not
specialize in discriminating any of the PAI species (PAISp) presented at
training time and, therefore, the learned internal representations should be
invariant to the PAISp. For this purpose, the model combines an adver-
sarial approach with a species-transfer training objective The high-level

architecture of the model is summarized in Fig. 1. It should be assumed
that one has access to a labeled dataset X = {XXX i,yi,si}N

i=1 of N samples,
where XXX i represents the i-th input sample, and yi and si denote the cor-
responding class label (bona fide or attack) and the PAI species (only
defined for attack samples), respectively. Let Xb f and Xa be these parti-
tions of X for bona-fide and attack samples, respectively, and Nb f and Na

their respective cardinality.
The model comprises three main sub-networks: (i) an encoder net-

work h(···;θh) that receives input samples and maps them to a latent space;
(ii) a task-classifier network f (···;θ f ) which aims to distinguish attack
and bona fide samples, mapping latent representations to the correspond-
ing class probabilities; and (iii) a species-classifier network g(···;θg) that
receives latent representations from attack samples and aims to predict
the corresponding PAI species. The species-classifier is trained to mini-
mize the classification loss of the PAI-species. Simultaneously, the task-
classifier and the encoder are jointly trained to minimize the classifica-
tion loss between attacks and bona fide samples, while trying to keep the
PAI-species classification close to random guessing. In addition to the
adversarial training, a species-transfer objective is employed to further
encourage the latent representations to be species-invariant. The overall
objective function of the encoder and task classifier is then the combina-
tion of the previous objectives and can be formulated as:

min
θh,θ f

L(θh,θ f ,θg)= min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)+ γLtransfer(θh)

}
,

(1)
where γ ≥ 0 is the weight that controls the relative importance of the
species-transfer term and the objective for the species-classifier remains
unchanged.

3 Experimental Setup
For more details, the reader is referred to Pereira et al. [9].

PAD Performance Evaluation Metrics: Equal Error Rate (EER),
Attack Presentation Classification Error Rate (APCER) andBona-fide Pre-
sentation Classification Error Rate (BPCER) for APCER of 5% as in [6].

Dataset: The Fingerprint LivDet2015 [7] training dataset comprises a
set of five subsets, each one corresponding to a specific fingerprint sensor.
For each sensor there are bona fide samples and different types of PAI.

Evaluation protocols: The framework is denominated “unseen-attack”,
as the PAI seen in the testing phase is unknown to the model.

Handcrafted feature extraction method: Histograms of intensity,
Local Binary Patterns (LBP and Local Phase Quantization .

Implementation details: The models were implemented in Python
with the PyTorch library. For details, see Pereira et al. [9].

4 Results and discussion
In Table 2, the results of the baseline methods (MLP and CNN) and their
respective regularised versions (MLPreg and CNNreg) are displayed. Com-
paring the performance of the baseline and regularised versions, it can be
observed that: i) regarding the MLP, except for the Hi Scan sensor, in
all the cases there is a significant improvement in at least 2 out of the 3
presented metrics; and ii) regarding the CNN, there is a significant im-
provement without exception in all error rates, with a particular signif-
icant improvement of the APCER value from 4.12% to 0.81% (for the
average of the five sensors). From these observations, it can be stated
with confidence that, overall, the regularisation technique improves the
PAD robustness of both the models.
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Figure 1: The architecture of the proposed species-invariant neural network (from [1]).

Still, it is arguable that the performance of the MLP, even the baseline
version, outperforms the CNN results. Nevertheless, it should be noted
that: i) the first scenario is taking advantage of rich handcrafted features;
and ii) the data available for training is not enough to take the best out
of the CNN learning capabilities. Thus, on the one hand the end-to-end
solution provided by the CNN saves a considerable effort in the compu-
tation of the feature extraction step and, on the other hand, increasing the
amount of training data will certainly increase the performance of these
models, as there is a high potential for growth.

Table 1: Baseline and proposed regularised approaches - Cross Match,
Digital Persona and Green Bit sensors. (BPCER@APCER = 5% noted
by BPCER@5.)

Method
PAD metrics (%)

Cross Match Digital Persona GreenBit
APCER BPCER@5 EER APCER BPCER@5 EER APCER BPCER@5 EER

MLP 0.07 7.57 4.33 0.00 0.53 0.45 0.70 0.20 1.10
MLPreg 0.13 4.30 3.70 0.00 0.00 0.30 0.70 0.63 0.93

CNN 5.00 6.25 8.70 5.60 10.80 7.28 3.03 14.13 7.05
CNNreg 1.07 4.65 2.82 0.60 3.85 2.45 0.60 2.93 1.63

Table 2: Baseline and proposed regularised approaches - Hi Scan and
Time Series sensors, as well as the average of the results for the 5 sensors.
(BPCER@APCER = 5% noted by BPCER@5.)

Method
PAD metrics (%)

Hi Scan Time Series Average of the 5 sensors
APCER BPCER@5 EER APCER BPCER@5 EER APCER BPCER@5 EER

MLP 0.30 2.83 3.03 0.00 0.03 0.60 0.21 2.23 1.90
MLPreg 1.30 3.60 3.38 0.00 0.03 0.10 0.43 1.71 1.68

CNN 5.60 20.15 11.25 1.37 9.10 4.07 4.12 12.09 7.67
CNNreg 1.20 1.21 1.04 0.60 6.30 2.70 0.81 3.79 2.13

Despite the evidences showed in favour of the effectiveness of the
regularisation technique, it is crucial to compare the results obtained with
the proposed approach against the current state-of-the-art DL based PAD
that tackle the unseen-attack scenario. This is not an easy task as most
works still opt for a more traditional approach, based on binary classifica-
tion limited to one type of attack at a time. From the available literature
using similar databases and addressing the generalisation problem, stands
out the meritory initiative of Fingerprint LivDet2015 [7] of evaluating the
methods with some unseen types of PAISp.

Table 3 presents the results of the proposed regularised CNN ver-
sion, CNNreg, alongside with the comparable literature methods currently
available. The comparison shows the best results for common subsets of
the used database presented in the LivDet2015 [5, 7] competition, as well
as with an additional recent publication [8]. From the observed results, it
is remarked the significant improvement of the CNNreg in two out of three
sensors and undoubtedly when considering the average values. In partic-
ular, the CNNreg provided an APCER value of 0.76% against 2.09% and
6.33% of the other methods (for the average of the three sensors).

Table 3: Literature and proposed approach.(BPCER@APCER = 5%
noted by BPCER@5.)

Method
PAD metrics (%)

Cross Match Digital Persona GreenBit Average
APCER BPCER@5 APCER BPCER@5 APCER BPCER@5 APCER BPCER@5

Proposed CNNreg 1.07 4.65 0.60 3.85 0.60 2.93 0.76 3.81
LivDet2015 [5, 7] 1.68 ≈ 0.80 0.60 ≈ 10.00 4.00 ≈ 5.00 2.09 ≈ 5.27

Park et al. [8] 0.00 - 11.00 - 8.00 - 6.33 -

5 Conclusions and future work
Comparing the baseline and regularised versions, it can be stated that,
overall, the regularisation technique improves the PAD robustness of both
the models. Despite the fact that the MLPreg fed with rich handcrafted
features proved to be competitive, the fact is that CNNreg has more po-
tential for growth and for increasing its performance in the future. The
comparison of the proposed approach against the current DL based PAD
methods that tackle the unseen-attack scenario, is not an easy task as most
works still opt for a more traditional approach based on binary classifica-
tion limited to one type of attack at a time. Still, from the comparison with
the available literature using similar databases and addressing the gener-
alisation problem, it is verified a significant superiority of the CNNreg in
two out of three sensors and undoubtedly when considering the average
values.
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