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Abstract

This paper discusses the design and implementation of the Iterative Ray-
Tracing algorithm for forest fire georeferencing using aerial imagery, a
Global Positioning System (GPS), an Inertial Measurement Unit (IMU)
and a Digital Elevation Model (DEM). Taking into account that measure-
ment errors are amplified by the target distance, an Extended Kalman
Filter (EKF) is proposed to filter multiple observations of the same ob-
ject of interest. This filter extracts the bearings and range information
from the geometric relation between the target and the camera in a local
coordinate system. A performance comparison is done with a Cubature
Kalman Filter (CKF) considering possible linearization errors induced by
the EKF.

In order to validate the georeferencing and filtering algorithms, an
experiment was conducted. A mobile phone was used to acquire GPS,
IMU and 14 images of a target. An average position error of 74.483m was
obtained at an average distance of 605m. Applying the Bearings-Range
EKF and CKF reduced the error to 33.620 and 33.820, respectively.

1 Introduction

Forest fires are increasingly becoming a frequent problem in modern day
society. Their destructive potential makes them a serious concern and a
challenge for firefighting authorities.

Fire propagation models have already been studied that take into ac-
count weather variables such as wind [7] and also the terrain type [6].
However, these models usefulness is limited since no fire geolocation al-
gorithm has been developed for this purpose. Henceforth, the aim of this
work is to fill in this gap and develop a georeferencing algorithm based
on images and telemetry recorded by an aerial vehicle. This images are
assumed to be pre-processed to identify the pixels that correspond to fire.

1.1 Related Work

Forlani et al. [3] apply direct georeferencing by using the on-board Global
Navigation Satellite System with the Real-Time Kinematic option with
Structure from Motion and Bundle Adjustment. No ground control points
are used. This methodology is, however, not suitable in a forest fire sce-
nario, where the lack of differentiated texture and smoke prevents feature
extraction and matching.

Conte et al. [2] propose an image registration approach by pattern-
matching the images collected from a Micro Aerial Vehicle with satellite
imagery. Multiple measurements are taken and recursive least square filter
is applied. Similarly to [3], this technique relies on feature extraction, and
is therefore unreliable in a forest fire environment.

Ponda et al. [8] develop a Line-of-Sight Bearings-Only EKF for tar-
get localization. This requires, however, a prior knowledge of the target’s
position, which is not reviewed in that work. Xu et al. [10] propose the
same measurement model using a CKF instead, considering possible lin-
earization errors induced by the standard EKF. To determine an initial
approximation of the target’s position, the Iterative Photogrammetry (IP)
algorithm [9] is used. In spite of being efficient, the IP method can diverge
when the incidence angle is smaller than the profile inclination angle.

Leira et al. [5] propose the intersection of the optic ray with a flat
surface. This generalization, however, is not suitable in rough terrains, as
seen in [10].

Figure 1: Iterative Ray-Tracing (adapted from [9]).

2 Georeferencing Algorithm - Iterative Ray-Tracing

The proposed georeferencing algorithm is the Iterative Ray-Tracing (IRT)
[9], presented in Figure 1, and the DEM used is the EU-DEM v1.1 [1],
with a spatial resolution of 25 meters and georeferenced in EPSG:3035.
Since the purpose of this work is to output the geodetic coordinates of the
target, this map is converted to the EPSG:4326.

The IRT works by extending the optic ray with a step size until it
hits the surface. A GPS and IMU are needed to define the origin and
direction of this ray, respectively, in a local NED frame. The intersection
is detected when the point elevation is equal or smaller than the elevation
of the DEM.

Multiple upgrades were introduced in the basic IRT, including a dy-
namic step size, to increase the accuracy of the algorithm. Furthermore,
the starting iteration point was set as the intersection of the ray with the
maximum elevation of the loaded DEM. It is expected that the aerial ve-
hicles will operate at heights greater than the local terrain, and this can re-
duce the number of iterations considerably. Finally, bilinear interpolation
was implemented to refine the elevation of the queried point. Ghandehari
et al. [4] concluded in their work that for DEM’s with finer resolutions,
such has the EU-DEM v1.1, this type of interpolation achieves good re-
sults with low processing times.

3 Bearings-Range Filter

3.1 Target Dynamic Model

In this work, the target is assumed to be stationary. Therefore, its dy-
namics can be modeled by tk+1 = Φk+1|ktk +Qk, where tk represents the
target position, Φk+1|k the state transition matrix and Qk the process co-
variance matrix:

Φk+1|k =

1 0 0
0 1 0
0 0 1

 , Qk =

0 0 0
0 0 0
0 0 0

 . (1)

3.2 Bearings-Range Measurement Model

The measurement model is given by zk+1 = h(tk+1)+Rk, where zk+1 is
the new measurement, h is the non-linear measurement function and Rk
is the measurement noise covariance matrix.
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Figure 2: Bearings-Range model geometry.

h(tk+1) =

β

φ

r

=


tan−1

(
py−ty
px−tx

)
tan−1

(
pz−tz√

(px−tx)2+(py−ty)2

)
√
(px− tx)2 +(py− ty)2 +(pz− tz)2

 , (2)

where β and φ are the azimuth and elevation angles, respectively, and r is
the distance between the target, t, and the aerial vehicle, p, as presented
in Figure 2.

4 Experiment

The unavailability of telemetry and imagery data from an aerial vehicle
led to the development of an alternative methodology to validate the pro-
posed algorithm. A mobile phone was used to record GPS, IMU and
image data along a pedestrian path. The natural elevation of Serra dos
Candeeiros, near Porto de Mós, Leiria, was used to capture images of a
target at a lower height, so as to simulate the overview of an aerial ve-
hicle. A total of 14 images were acquired at an average target distance
of 605 meters. For the filtering, the IRT result for the first observation is
used to initialize the filter state, t0. The initial state covariance P0 and
measurement noise covariance matrix Rk were tuned to

P0 =

202 0 0
0 502 0
0 0 12

 , Rk =

52 0 0
0 52 0
0 0 102

 . (3)

Details on the EKF and CKF algorithms can be found in [8] and [10],
respectively.

The position error is defined as ep = t− t̂, where t̂ is the estimated
target. σx, σy and σz are defined as the square root of the filter state
covariance matrix diagonal. The results of the standalone IRT, EKF and
CKF are summarized in Table 1.

Method ||ep|| [m] ||σx,y,z|| [m]
IRT 74.483 n.d.
IRT+EKF 33.620 7.2497
IRT+CKF 33.820 7.2502

Table 1: Norm of the average position error for the standalone IRT and
for the final correction of the EKF and CKF.

The IRT results presented in Figure 3 evidence a bias along the pos-
itive East direction, which then influences the estimated positions of the
EKF and CKF.

5 Conclusions

In this paper, the IRT is proposed as a georeferencing algorithm using the
EU-DEM v1.1. Expecting measurement errors from the GPS and IMU,
a bearings-range filtering algorithm was developed, with a performance
comparison between the EKF and CKF. Preliminary results using the data
collected with a mobile phone show evidence of bias susceptibility. This
may be due to the non-ideal preliminary experimental setup using a line
of sight more parallel to the ground when compared to the more vertical
one from an aerial vehicle. Furthermore, the 14 images were captured at
approximate positions, limiting the new information added to the filtering
algorithm. Still, an improvement of 41 meters is achieved on the 74 meter

Figure 3: Real and estimated target positions by the IRT, EKF and CKF
algorithms.

average position error of the standalone IRT. There is no clear advantage
in using the CKF over the EKF for this measurement model.
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