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Semantic Vs Radiomic Features from CT Images to Predict Gene Mutation Status in Lung Cancer
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Abstract

In lung cancer, the biopsy is the traditional method to assess the mutation
status of the most frequent and relevant oncogenes. Medical imaging,
which is already a common source of information in clinical practice, is a
potential alternative to the biopsy. It contains a large number of features
that, although not visible to the naked eye, may be valuable for tumour
characterisation. The recent field of radiomics allows new opportunities
for the genomic analysis of a tumour, by extracting hundreds of quanti-
tative features from medical images which, in a non-invasive way, pro-
vide a full state visualisation of a tumour at a macroscopic level. This
study aimed to investigate in which extent features extracted from medi-
cal images are related to helpful genotype factors for tumour characteri-
sation, in particular for EGFR and KRAS mutation status. Radiomic and
semantic features were used for the prediction. The performance of the
models demonstrated that EGFR (AUC=0.75) mutation status can be dif-
ferentiated through medical images using semantic features. The experi-
ments suggest that the best way to approach this problem is by combining
nodule-related features with features from other lung structures.

1 Introduction

Lung cancer is the cancer type leading the incidence and mortality rates
[5]. This is linked to the fact that it is often diagnosed in an advanced
stage, which magnifies the importance of treatments for advanced-stage
disease. Epidermal Growth Factor Receptor (EGFR) and Kristen Rat Sar-
coma Viral Oncogene Homolog (KRAS) are the most frequently mutated
gene in lung cancer [8]. Current molecularly-targeted therapies can ef-
fectively target specific biomarkers, decreasing multiple undesirable side
effects associated with cancer treatment. Radiogenomics, a specific field
within radiomics, is defined by the correlation between quantitative fea-
tures, directly extracted from radiological images (imaging phenotype),
and genetic information (genotype). Studies in lung cancer have presented
the association between EGFR mutation status and quantitative features
extracted from computed tomography (CT) scans [1, 4].

This study aims to provide further advances and to open new discus-
sions in the lung cancer radiogenomics field by exploring the data and
building machine learning models, while considering different subsets of
inputs. More specifically, predictive models for EGFR and KRAS muta-
tion status in lung cancer were developed. The current paper is an adap-
tation of our previously published work [9].

2 Material and Methods

2.1 Dataset

The NSCLC-Radiogenomics dataset [7] comprises data collected between
2008 and 2012 from a cohort of 211 patients with Non-small-cell lung
cancer (NSCLC) referred for surgical treatment, being the only public
dataset which comprehends information regarding the mutation status of
lung cancer-related genes (EGFR and KRAS). It contains a set of CT im-
ages stored in DICOM format.

2.1.1 Molecular Data

Despite including a cohort of 211 NSCLC subjects, only 116 (wild type:
93, mutant: 23) were further considered in the presented radiomic study
for EGFR mutation status prediction and 114 (wild type: 88, mutant: 26)
for KRAS mutation status prediction. The scarce availability of tumour
masks and target labels did not allow all subjects to be used.

2.1.2 Clinical Features

Clinical features were added to the radiomic features as well as to the
semantic features to build the predictive models.

2.1.3 Radiomic Features

There are image properties, such as the distance between slices, which
may differ from scan to scan, and consequently affect the features ex-
tracted and the learning ability of the algorithms. Therefore, before try-
ing to extract patterns, the images went through a preprocessing step in
order to standardise the scans across the whole dataset. The CT image
values were converted to Hounsfield Unites (HU), which is a measure of
radiodensity. From the 3D images of the nodules of the pre-processed
CT scans, a set of 1218 radiomic features were extracted using the open-
source package Pyradiomics [10]. Features were computed both on the
original image and on images obtained after application of wavelet and
Laplacian of Gaussian (LoG) filters. Six classes of features were extracted
from the Pyradiomics package: shape-based features (14 features), first-
order features (18 features), GLCM features (22 features), GLRLM fea-
tures (16 features), GLSZM features (16 features) and GLDM features
(14 features).

2.1.4 Semantic Features

The dataset comprises a set of subjects whose tumour was analysed by
radiologists using 30 nodule and parenchymal features, which describe
nodule’s geometry, location, internal features and other related findings.
From these subjects, 158 are characterised in terms of EGFR mutation
status and 157 subjects characterised in terms of KRAS mutation status,
which were the samples selected for the presented semantic study.

2.2 Balancing Training Set

In general, machine learning algorithms assume a similar distribution
of classes. EGFR wild type is over-represented, which could result in
a model biased towards this class. To overcome this class imbalance,
Synthetic Minority Over-sampling Technique - Nominal and Continuous
(SMOTE-NC) was applied, an extended version of SMOTE generalised
to handle data with continuous and nominal features [2].

2.3 Classification and Feature Importance

The classifier used in this work was Extreme Gradient Boosting (XG-
Boost), which is a scalable and accurate implementation of gradient boosted
trees algorithms [3]. A benefit of using gradient boosting is that after
the boosted trees are constructed, it is possible to retrieve the importance
scores for each feature, based on how useful or valuable each feature was
in the construction of the boosted decision trees within the model.
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Figure 1: Top 16 semantic features based on the importance scores of features, measured via XGBoost, for predicting the EGFR mutation status.

3 Results

Mean values of Area Under the Curve (AUC) were reported for 100 ran-
dom data splits, with a division of 80% and 20% for training and testing,
respectively. Two main types of input features were considered: radiomic
and semantic. The semantic were further divided into features that only
describe the nodule, features that only describe structures external to nod-
ule and a hybrid between the previous two. Radiomics were not further
divided as they only describe the nodule. We designed those four exper-
iments in order to test and compare which type of input features allow
to achieve better performance in gene mutation status prediction (Table
1). Only the predictive models for EGFR showed relevant results, with a
maximum mean AUC of 0.7458 ± 0.0877 using the hybrid semantic fea-
tures (Table 1). A subset of features, ranked by importance for the most
successful model (EGFR mutation status prediction using hybrid semantic
features), is presented in Figure 1. They were selected using a minimum
threshold of 0.02 and add up to cumulative importance of 0.92 out of 1.

AUC EGFR Prediction KRAS Prediction
Radiomic 0.5797 ± 0.1238 0.5087 ± 0.0104
Semantic Nodule 0.6542 ± 0.0953 0.4381 ± 0.0679
Semantic Non-Nodule 0.6831 ± 0.0890 0.4921 ± 0.0851
Semantic Hybrid 0.7458 ± 0.0877 0.5035 ± 0.0776

Table 1: Classification results for EGFR and KRAS mutation status pre-
dictive models.

4 Discussion and Conclusions

The results of the present study suggest that even though EGFR mutation
status is correlated to CT scans imaging phenotypes, the same does not
hold true for KRAS mutation status. We hypothesise that this might be due
to two reasons: mutated and wild type KRAS display identical imaging
phenotypes, which is supported by the literature [6, 11, 12], or our number
of samples was too small and unrepresentative to find a relevant pattern
for such a complex problem.

The outcomes of this work also indicate that general lung semantic
features in conjunction with tumour specific semantic features should be
used in order to obtain the best possible EGFR mutation status classifica-
tion results. This, combined with the fact that the most relevant features
(as determined by the classifier) were tumour external, might hint towards
the importance of a holistic lung analysis, instead of a local nodule anal-
ysis. It is crucial to emphasise this characteristic, as it might change the
direction and broaden the analysis spectrum of future radiogenomics stud-
ies, which until now have been mainly focusing on the nodule or in a
region of interest around it [13]. Since there is a large spectrum of clini-
copathological processes that occur during the lung cancer development,

it is only natural that important information for the predictive models can
be obtained from a larger region of analysis that contains other structures
from the lung.
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