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Abstract

This work proposes an active learning approach for estimating the Denavit-
Hartenberg parameters of 7 joints of the iCub arm in a simulation envi-
ronment, using observations of the end-effector’s pose and knowing the
values from proprioceptive sensors. Cost-sensitive active learning, aims
to reduce the number of measurements taken and also reduce the total
movement performed by the robot while calibrating, thus reducing energy
consumption, along with mechanical fatigue and wear. The estimation of
the arm’s parameters is done using the Extended Kalman Filter and the
active exploration is guided by the A-Optimality criterion. The results
show cost-sensitive active learning can perform similarly to the straight-
forward active learning approach, while reducing significantly the neces-
sary movement.

1 Introduction

Active learning is a sub-field of machine learning which aims to reduce
the amount of training data required to build a model, with a certain pre-
cision. This is done by having the learning algorithm decide which data
it wants to label/sample next. A general introduction for this area of re-
search can be found in [8].

1.1 Related Work

Recent works have succeeded in employing different strategies for body
schema adaptation, such as [9], [10] and [7]. All these works show differ-
ent successful ways of accounting for the robot’s body errors, but using
active learning to this effect would promote faster adaptation.

Active learning methods have better empirical results, when com-
pared to random sampling. Some of these works are described in [3],
[4], [7], and [2]. These works have shown the advantages of using ac-
tive learning but assume all samples have equal acquisition cost. In [5] a
criterion is proposed considering uncertainty and travel cost for the des-
ignated task, minimising the accumulated path length needed for accurate
estimation, at the cost of an increase of the number of samples.

1.2 Contributions

This work aims to estimate the Denavit-Hartenberg (DH) parameters of 7
rotational joints of the iCub arm in a simulation environment, by acquiring
observations from the pose of the end-effector, using active learning to
select the best joint configurations for movement and sampling efficiency.

By portraying an arbitrary serial robotic arm as in Figure 1, a calibra-
tion routine is proposed to make use of active learning to select the best
joint configurations to sample the end-effector pose, in order to estimate
the DH parameters with the best possible precision, using the Extended
Kalman Filter (EKF).

Similarly to [5], we argue that using active learning to reduce the
number of samples taken may not be the best approach, since some of the
best samples may require unnecessary long movements, increasing exe-
cution time and energy spent. The cost-sensitive active learning approach
provides a tunable trade-off between minimising the number of iterations
required and minimising the required movement. The proposed calibra-
tion routine is composed of the key steps shown in Figure 2.

Figure 1: Illustration of a robot’s kinematic chain. θ (i) represents the an-
gle value for joint i and x(i) represents the Denavit-Hartenberg parameters
describing the transformation between frames i and i+1.

Figure 2: Key steps in the structure of the required program.

1.3 Extended Kalman Filter

The EKF, explained in detail in [6], allows recursive parameter estimation
of systems represented by a nonlinear model, which is the case for the
relation between the DH parameters, x, and the end-effector pose, z, given
by the function

z = h(x,θ), (1)

where θ represents the known joint angles. Since the DH parameters are
constant in time, the EKF can be summarized in the following 3 equations.
The predicted co-variance, P, of the DH parameters, x, is given by

Pk+1|k = Pk|k +Qk, (2)

where Qk is the co-variance matrix of the Gaussian noise associated with
slow changes in the DH parameters, e.g. due to temperature. The update
of the prediction, x̂, after obtaining a measurement, zk, is given by

x̂k+1|k+1 = x̂k+1|k +Kk+1[zk−h(x̂k+1|k,θk)] (3)

and the update of the co-variance, P, is given by

Pk+1|k+1 = Pk+1|k−Kk+1

[
HkPk+1|kHT

k +Rk+1

]
KT

k+1, (4)

where
Kk+1 = Pk+1|kHT

k+1

[
HkPk+1|kHT

k +Rk+1

]−1
, (5)

H is the jacobian matrix of the observation function in (1), with respect
to x, ∂h

∂x , and R is the co-variance matrix of the Gaussian noise present in
the measurements.
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Link 0 1 2 3 4 5 6
aaa [mm] 0 0 -15 15 0 0 62.5
ddd [mm] -107.74 0 -152.28 0 -137.4 0 16
ααα [rad] π

2 − π

2 − π

2
π

2
π

2
π

2 0
θθθ [rad] − π

2 − π

2 − 7π

12 0 − π

2
π

2 π

Table 1: Actual DH parameters of the iCub arm in the iCub simulator.

0 20 40
100

101

102

Iteration #

A
ve

ra
ge

Po
si

tio
n

E
rr

or
[m

m
]

0 20 40
10−2

10−1

100

Iteration #
A

ve
ra

ge
O

ri
en

ta
tio

n
E

rr
or

[r
ad

]
(a) (b)

0 0.5 1

·104

100

101

102

Movement
[rad]

A
ve

ra
ge

Po
si

tio
n

E
rr

or
[m

m
]

0 0.5 1

·104

10−2

10−1

100

Movement
[rad]

A
ve

ra
ge

O
ri

en
ta

tio
n

E
rr

or
[r

ad
]

(c) (d)
Figure 3: Mean error evolution while performing the calibration routine
for different values of δ : (a) Average position error evolution in millime-
tres at each iteration; (b) Average orientation error evolution in radians
at each iteration; (c) Average position error evolution in millimetres with
respect to joint movement; (d) Average orientation error evolution in radi-
ans with respect to joint movement. Legend: Square - Random; Triangle
- δ = 1; No marker - δ = 0.4; Circle - δ = 0.1.

1.4 Cost-sensitive Active Learning

This work aims to choose the best joint configurations to sample the
end-effector pose, at each iteration of the calibration routine, to reduce
both the body-schema error and movement performed while calibrating.
Martinez-Cantin et al. [2] successfully used the A-optimality criterion to
reduce the number of samples taken. It consists in choosing the joint
angles θ which minimise the expected mean squared error of the robot
parameters, x, which approximates to minimising the expected trace of
the co-variance matrix, P. As described, the cost function is given by
C(θ) = E

[
(x̂k+1− x)T (x̂k+1− x)|z1:k,θ1:k

]
≈ E [tr(Pk+1)|z1:k,θ1:k].

This work proposes adding constraints to the optimisation problem as
in

θ
∗
k =

argmin
θ∈[θ ∗k−1−∆,θ ∗k−1+∆]

C(θ), (6)

where θk−1 is the previous joint configuration selected and ∆ is a vector
of size n (number of joints), defining the boundaries of the search space.
Considering normalised joint values in the interval [0,1], ∆ is defined as
∆ = δ ·1n1n1n, where 1n1n1n is a unit vector of size n and δ is a tuning parameter
that defines the relative movement every joint can perform around the
current arm configuration. Since the problem defined in (6) is not convex,
it must be solved using a global optimisation method, for which it is used
the DIRECT algorithm, proposed in [1].

2 Results

Results were obtained for different values of δ . For each different value,
the calibration routine runs fifty times and the plots from Figure 3 show
the average values of position and orientation error. At each run, the DH
parameters are initialised with values from a uniform distribution, where
the means are the actual values of the DH parameters, from Table 1 and
the width of the distribution is 30% of the highest value from all the lin-
ear and angular DH parameters, 46 mm and 0.94 rad, respectively. The
position error is given by the euclidean distance between the predicted
position and actual position of the end-effector and the orientation error

is given by computing d(RA,RB) =

√
‖logm(RT

A RB)‖2
F

2 [rad], between the
predicted, RA, and actual, RB, end-effector rotation matrices, where logm
is the principal matrix logarithm and ‖ · ‖F is the Frobenius norm. Gaus-
sian noise is added to the observations with a standard deviation of 2 mm
for the position coordinates and 0.08 radians for the orientation.

Looking at Figures 3(a) and 3(b), the advantages of using the active
learning method proposed in [2], corresponding to δ = 1, can be observed
by comparing it with selecting random joint configurations to sample, in-
stead of solving (6), since there is a more significant reduction in error at
each iteration. In Figures 3(c) and 3(d), the same data is represented, but
the x axis represents the movement performed by the arm. It is visible
the amount of extra movement performed by the active learning method,
δ = 1, almost double of the random method. Restricting movement, mak-
ing δ = 0.4, yields no performance loss, regarding Figures 3(a) and 3(b),
and it is more efficient, as Figures 3(c) and 3(d) show.

3 Conclusions

The results show there is an advantage in restricting movement during the
optimisation stage. It is possible to reduce the movement performed by
roughly half and still maintain the iteration wise performance. If move-
ment efficiency is a priority, one can restrict the movement even more, at
the cost of more iterations. It is worth mentioning, more iterations does
not mean lower time-efficiency, since reducing the amount of time spent
moving may make up for the extra computing time. Indeed, it will depend
on the computing power and the speed at which the arm moves.

For future work, it is planned to obtain results using the iCub cameras
and fiducial markers placed on its hand. This comes with observation
noise dependant on the observed pose and it should be taken into account
when selecting optimal joint configurations.
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