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Comparison and Evaluation of Information-based Measures in Images
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Abstract
Lossless data compressors and small Turing machines can approxi-

mate the quantity of information present in a digital object. In this paper,
we describe and compare these approaches of measuring unsupervised
probabilistic and algorithmic information on images (2D) with different
characteristics. We use the Normalized Compression (NC) employing the
data compression PAQ8 and compare it with the Block Decomposition
Method (BDM) and show some advantages and limitations of both mea-
sures.

1 Introduction
There are several approaches to quantify the amount of information.

Kolmogorov described three, namely combinatorial, probabilistic, and al-
gorithmic [4]. While the Kolmogorov complexity is non-computable,
it can be approximated with programs for such purpose, such as data
compressors, using probabilistic and algorithmic schemes. Practical ap-
plications to approximate the Kolmogorov complexity for multiple di-
mensional digital objects have been developed using Turing machines
[6, 7] and data compressors [3]. Recently, Zenil et al. have shown that
this methodology has a closer connection to algorithmic information than
other measures based on statistical regularities [7], namely fast lossless
compression methods, for sources that follow algorithmic schemes. One
of the applications of information theory is to measure image informa-
tion. Herein, we define an image’s quantity of information as the smallest
number of bits required by a model to represent an image losslessly. To
perform this task, the model searches for unknown patterns of similar-
ity between sub-regions of the image and uses this information to cre-
ate this compressed representation of the image, relying exclusively on
the two-dimensional pixels’ patterns without using exogenous informa-
tion. In this paper, we describe and compare solutions for unsupervised
measures of probabilistic and algorithmic information in images (2D) of
different datasets. We use the Normalized Compression (NC) employ-
ing PAQ8 data compression tool and compare it with the Block Decom-
position Method (BDM) [7], and the inherent Coding Theorem Method
(CTM) measures [2]. The BDM is an information-based measure that
uses small Turing machines to approximate the algorithmic information,
approximating to the Shannon entropy as a fallback mechanism.

2 Methods
In this section, we describe the Normalized Compression (NC) and

two Block Decomposition Method (BDM) normalizations.

Normalized Compression (NC)
An efficient compressor, C(x), gives a possible approximation for

the Kolmogorov complexity (K(x)), where K(x) < C(x) ≤ |x| (|x| is the
length of string x in the appropriate scale). Usually, an efficient data
compressor is a program that approximates both probabilistic and algo-
rithmic sources. Although the algorithmic nature may be more complex
to model, data compressors may have embedded sub-programs to handle
this nature. For a definition of safe approximation, see [1]. The normal-
ized version, known as the Normalized Compression (NC), is defined by
NC(x) = C(x)

|x| log2 |A|
=

C(x)
|x| , where x is a string, C(x) is the compressed size

of x in bits, |A| the number of different elements in x (size of the alphabet)
and |x| the length of x. Since we consider a binary matrix of each image,
|A| = 2, log2 2 = 1. Given the normalization, the NC enables to compare
the information contained in the strings independently from their sizes [5].

If the compressor is efficient, then the compressor is able to approximate
the quantity of probabilistic-algorithmic information in data.

Normalized Block Decomposition Method (NBDM)
Another possible approximation to the Kolmogorov complexity is

given by the use of small Turing machines, where these small computer
programs approximate the components of a broader representation. The
Block Decomposition Method (BDM) extends the power of a CTM, ap-
proximating local estimations of algorithmic information based on the
Solomonoff-Levin’s algorithmic probability theory. In practice, it ap-
proximates the algorithmic information and, when it loses accuracy, it
performs like Shannon entropy. Since in this article we intend to perform
a direct comparison of both measures, we first considered the normaliza-
tion of the BDM (NBDM1), given by the number of elements (length) of
the digital object: NBDM1(x) =

BDM(x)
|x| log2 |A|

=
BDM(x)
|x| . However, the nor-

malization of the BDM is usually performed using a minimum complex-
ity object (BDMMin) and a maximum complexity object (BDMMax). A
minimum complexity object is filled with only one symbol, like a bi-
nary string of only zeros. In contrast, a maximum complexity object is
an object that, when decomposed (by a given decomposition algorithm),
yields slices that cover the highest CTM values and are repeated only
after all possible slices of a given shape have been used once. Using
these two objects, the NBDM2 for a given string can be computed as
NBDM2(x) =

BDM(x)−BDMMin
BDMMax−BDMMin

, where BDM(x) is the BDM value of that
string, BDMMin is the minimum complexity object, and BDMMax is the
maximum complexity object. Kolmogorov complexity is invariant only
up to a constant factor, which depends on the choice of a description lan-
guage K =K′+L, where K is the total complexity, K′ is the description of
the object and L is the description of the language. As such, by performing
the normalization according to Equation 2, the normalization is aiming to
remove the constant factor as K−KMin

KMax−KMin
=

K′+L−K′Min−L
K′Max+L−K′Min−L =

K′−K′Min
K′Max−K′Min

,

where KMax and KMin are the maximum and minimum Kolmogorov com-
plexity objects and K′Max and K′Min are the maximum and minimum Kol-
mogorov complexity description of the objects.

3 Results and Discussion
In order to compare NC with BDM, we performed three types of tests.

Namely, we compared the robustness of both measures according to in-
creasing rates of random pixel changes in paintings, tested their applica-
tion on different types of images, and made an assessment of the minimal
information bounds. In the first test, we assessed the impact of an increas-
ing rate of pixel editions using a pseudo-random uniform distribution and
compared both information-based measures. This approach is not identi-
cal to image noise, but rather a pure edition of pixels. For the purpose, we
selected a painting from three authors (Theodore Gericault, Marc Cha-
gall, and Rene Magritte), making 50 adulterated copies of each painting
with increasing edition rate (from 1 to 50%). Finally, we measured the
NC (Eq. 2), the NBDM1 (Eq. 2), and NBDM2 (Eq. 2) in all the paintings.
Figure 1 (A) depicts the values obtained for the NC and BDM. The re-
sults show that, when using the same type of normalization, NC is more
robust to the increment of pixel edition than NBDM (NBDM1). On the
other hand, whereas NBDM1 considers the normalization by the length
of the input object, NBDM2 performs a normalization that aims to mimic
the removal of the constant factor related to Kolmogorov complexity (see
Eq. 2). Since the NBDM2 normalization does not take into account the
constant of the description language, it shows a more robust behavior than
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NBDM1, which increases rapidly with the increase of pixel edition. Since
NC and NBDM1 have the same type of normalization, we will focus on
comparing these normalizations from now on.

Figure 1: Evaluation of Information-based measures. (A) Impact of in-
creasing pseudo-random substitution on information-based measures: NC
(approximated using the PAQ8 algorithm) and two BDM normalizations
(NBDM1 and NBDM2). (B) NC and NBDM1 for different types of im-
ages. (C) Image transformation pipeline leading to BDM underestimation
of the amount of information contained in the transformed object.

In the second test, we applied both measures to six datasets with dis-
tinct nature (9 images each) to understand how NBDM1 and NC behave
with different types of images. The six datasets were: artistic images
from 2 different datasets; cellular automata images; diabetic retinopathy
images; chest computed radiography (CR) images and photographic im-
ages. The results are depicted in Figure 1 (B). Overall, the majority of the
datasets show similar behavior regarding the NC and NBDM1. The ex-
ceptions to this are the CR and cellular automata datasets, which exhibit

a more algorithmic behavior. The latter dataset is constituted by images
created with small programs with simple rules. Whereas the compressor
has difficulty compressing this type of images, the BDM can determine
their algorithmic nature and thus attribute them with minimal value. This
outcome shows the importance of the BDM in the detection of simple
output programs embedded into data. In the last test, we selected one of
the most complex images identified by the NBDM in the last subsection
to test if the BDM could accommodate specific data alterations. This test
is depicted in Figure 1 (C). After the binarization process, we performed
a super-sample image transformation where each char was amplified to a
4x4 representation. This value was selected since the BDM has the de-
fault block size value of 4x4 in 2D structures. After this operation, the
BDM was computed for the original and the super-sampled image. While
the original image was measured with 370981 bits, the super-sampled im-
age had only 79 bits. This abrupt decrease in the complexity value indi-
cates that the BDM underestimates the amount of information contained
in the object. The BDM analyses object information in blocks instead of
looking at the whole object. Specifically, blocks analysed by the BDM
(default block size value of 4x4 in 2D structures) have the same size as
the super-sample image transformation (each char was amplified to a 4x4
representation); therefore, the complexity attributed to each block is ap-
proximately zero (since each block is composed of all zeros or ones), and
hence the overall value attributed to the complexity of the object will drop
dramatically. This analysis shows that BDM is not prepared to deal with
the information associated with the choice of the model, unlike the NC.
The NC relies on the use of a lossless data compressor, bounded by a
maximum information channel capacity.

4 Conclusion
The results show that, when using the same type of normalization, NC

is more robust to the increment of pixel edition than NBDM (NBDM1).
On the other hand, BDM can determine the algorithmic nature of images
created with small programs with simple rules. Whereas the compres-
sor has difficulty compressing this type of image, the BDM can deter-
mine their algorithmic nature and attribute them with minimal value. Fi-
nally, BDM is not prepared to deal with the information associated with
the model’s choice, unlike NC. The NC relies on using a lossless data
compressor, bounded by a maximum information channel capacity. From
these three tests, we can notice some advantages and limitations of both
measures. Ranking these measures is not a fair task because they have
different characteristics and nature.
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