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Abstract

The increasing demand concerning stroke rehabilitation and in-home ex-
ercise promotion requires objective methods to assess patients’ quality of
movement, allowing progress tracking and promoting consensus among
treatment regimens. In this work, we propose a method to detect diverse
compensation patterns during exercise performance with 2D pose data to
automate rehabilitation programs monitorization in any device with a 2D
camera, such as tablets, smartphones, or robotic assistants.

1 Introduction

With the escalating demands towards stroke rehabilitation and the in-
crease of in-home exercise recommendations [2], the need for new means
to evaluate patients’ motor performance has risen [4, 7]. In conventional
assessment tests, therapists assess movement quality based on observa-
tion, thus being highly subjective [4]; with the degree of experience im-
plying distinct treatment approaches [7]. Quantitative and objective meth-
ods allow patients’ progress tracking, impaired movements’ understand-
ing, and formulation of standard therapy regimens [4, 6].

Patients’ physically impaired often exhibit compensation behaviors to
accomplish a task. Motor compensation is the presence of new movement
patterns derived from the adaptation or substitution of old ones, which
might help patients’ execute a task [5]. New patterns can include the use
and activation of additional or new body joints and muscles. Most typical
compensation behaviors are trunk displacements, rotation, and shoulder
elevation. These functional strategies are commonly observed in reaching
and are highly related to severe impairment levels [5].

Early on the recovery process, the use of compensation strategies pro-
motes patients’ upper limb participation in task performance. However,
their persistence may obstruct real motor function recovery and must be
reduced during therapy through appropriate exercise instructions [5].

In this work, we present a method to assess quantitatively motor com-
pensation from video frames during upper limb exercise performance. We
have created a labelset (Table 2) for each video frame of the dataset re-
garding the observed compensation patterns. We then explore two meth-
ods to assess these patterns based on 2D pose data enabling this kind of
analysis with widely available RGB cameras.

2 Related Work

When conceiving quantitative methods to assess movement quality, re-
searchers carry out the kinematic study of 3D pose data to track patients’
progress, enhance in-home therapy, and bring consensus among thera-
pists’ evaluation. Kinematics delineates body movements over space and
time, giving information on linear and angular displacements. Prior works
usually explore joint angular motion and trunk displacements. Some stud-
ies determined which kinematic variables better describe motor impair-
ment and identify upper limb disability levels through PCA analysis [6].
Others assessed the quality of the upper extremity movement with ma-
chine learning methods [4, 7]. However, existing methods do not detect
distinct compensation patterns and are based on 3D pose data, which lim-
its its wide applicability in off-the shelf computational devices.

3 Learning to Assess Motor Compensation

Considering stroke survivors with one weakened side of the body, we as-
sess motor compensation through individuals’ body parts’ 2D pose data
extracted from video frames. To accomplish this task, we execute the
following steps: body keypoints extraction and selection, data normaliza-
tion, and multilabel classification to determine the compensation patterns

observed among the video frames. We present a rule-based (RB) clas-
sification method, which works as our baseline approach and a Neural
Network (NN) that assesses compensation through the body keypoints.

3.1 Feature Extraction and Selection

To extract the body joints’ 2D pose data, we use the OpenPose [1], a
software library that provides the location of 25 body keypoints in the
image coordinate system. Each keypoint is denoted by pt

j = [x y]′, where
j denotes a body joint and t the frame number.

Figure 1: Body
keypoints.

We consider two scenarios (S1 and S2) concern-
ing patients’ position in front of the camera: one fac-
ing the recording camera (S1) and the other with the
patient’s affected arm facing the camera (S2). Ac-
cording to [4], we select the joints shown in Figure
1 to describe patients’ movements, which are held
by the RB and NN methods. The head keypoints,
j ∈ [15,18], are held for the RB method, in addition
to the selected joints, to overcome the lack of 3D data
by head size variation. Considering a multi-person
setting (with the patient under evaluation and a caregiver), we select the
patient assuming he/she is the closest person to the center of the image.

3.2 Data Normalization

In a real-world setting, subjects have body parts’ of different sizes and are
not placed at the same place regarding the camera. For this reason, we
normalize the keypoints. First, we apply rigid body transformation from
the image coordinate system, {I}, to the body coordinate system, {B}, in
which the patient’s joint 8 is the origin. This step considers the patients’
affected side. For S1, the BX axis is directed to the affected side. For S2,
the BX axis is directed to the patients’ front. Additionally, we normalize
each resultant keypoint coordinates to the spine length measured in t = 1.
For the NN, to give the non-affected side as a reference, we mirror the
joints to the BX axis positive side, aligning both sides. For RB, each
keypoint moves regarding other specified keypoint.

3.3 Kinematic Variables

We compute kinematic variables for the RB approach to describe motion
patterns similar to [4, 6]. However, as we work with 2D positional data,
we do not have information about patients’ movements in depth. This
way, we formulate hypotheses to detect the different compensation pat-
terns: trunk moving forward, trunk rotation, shoulder elevation, and other
trunk displacements, such as trunk tilt and trunk moving backward. More
specifically, for both scenarios S1 and S2 - the formulated hypotheses and
respective kinematic variables are summarized as follows.

Trunk Forward/Backward: S1 - observed changes in patient’s head
size, ∆Ht (Ht - head area in t > 1); S2 - spine angular and linear displace-
ments, at(p1

8, p1
1, pt

1) (at - angle between three joints) and dt
x(pt

1, p1
1) (dt

x
- displacement in X).

Trunk Rotation: S1 - simultaneous angular displacements of both
shoulders, at(p1

2, p1
1, pt

2) and at(p1
5, p1

1, pt
5); S2 - absolute changes in the

observed chest length, |∆dt(pt
2, pt

5)| (d
t - Euclidean distance between two

joints) or1 shoulder displacement regarding joint 1 in X , dt
x(pt

2/5, pt
1).

Shoulder Elevation: S1 - shoulder elevation angle at(p1
2/5, p1

1, pt
2/5);

S2 - shoulder displacement regarding joint 1 in Y , dt
y(pt

2/5, pt
1) (dt

y - dis-
placement in Y ).

Trunk Tilt: S1 - spine angular displacement at(p1
8, p1

1, pt
1); S2 - ab-

solute changes in patient’s head size, |∆Ht |.
1In S2 patients can show their chest or be completely aside



*/

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Exercise Scenario Pmin

E1 ‘Bring a Cup to the Mouth’ S1 83.83%
E2 ‘Switch a Light On’ S1 91.4%
E3 ‘Move a Cane Forward’ S2 98.15%

Table 1: The three exercises and percentage of single labeled frames.

Label IRLblE1/E2/E3 Label IRLblE1/E2/E3

‘0: Trunk Forward’ -/-/3.54 ‘3: Other’ 4.93/5.55/-
‘1: Trunk Rotation’ 16.23/19.25/- ‘4: Normal’ 1/1/1
‘2: Shoulder Elevation’ 2.15/3.03/15.77 - -

Table 2: Considered labels and IRLbl metric for each one.

3.4 Classification Approaches

While exercising, a stroke survivor can describe multiple compensation
moves. Thus, we consider this problem a multilabel classification prob-
lem and learn the different compensation patterns observed in a video
frame. We explore two approaches: a RB method and a NN that learns
the observed patterns based on the keypoints position.

The former method is a set of if-then rules (e.g. ‘2’ if shoulder an-
gle is above a threshold) applied to the kinematic variables and ending in
the class labels [3, 8]. The latter is an ensemble of two classifiers seiz-
ing to respect label dependency and overcome label imbalance [8]. The
first classifier (C1) executes binary classification, verifying compensation
existence. If there is compensation, the second classifier (C2) performs
multilabel classification to determine the pattern. Here we apply binary
relevance One-vs-Rest, which considers each label independently. After-
ward, we join the classification results into the multilabel output.

4 Method Validation
To validate our method, we use the rehabilitation exercise videos from
Lee et al. work [4]. We validate the formulated hypotheses to assess com-
pensation through the kinematic analysis and present the classification re-
sults with our baseline classifier. To validate the NN ensemble, we apply
Leave-One-Subject-Out (LOSO) cross-validation (CV).

4.1 The Multilabel Dataset

The dataset consists of videos with 15 stroke survivors performing an av-
erage of 10 movement trials of three upper extremity exercises (E1, E2,
and E3), detailed in Table 1. We assigned to every video frame multiple
labels (Table 2). Label ‘3’ includes trunk tilt and moving backward. Label
‘4’ holds movements with no compensation or the resting state. As shown
in Table 1, the dataset is almost single labeled - high percentage of single
labeled frames, Pmin. Regarding label imbalance, in Table 2, the IRLbl
metric shows the ratio between the occurrences of the most frequent la-
bel and each label. We can see that, for the three exercises, label ‘4’ is
the most frequent, IRLbl = 1. For E1 and E2, ‘1’ is poorly represented,
IRLbl � 1, with only one patient exhibiting this compensation pattern.
For E3, the less representative label is ‘2’.

4.2 Kinematic Variables

We validate the hypotheses formulated to assess compensation from 2D
positional data. Figures 2(a) and 2(b) show the variation over time of three
kinematic variables used to assess compensation behaviors, without 3D
data. In Figure 2.(b) trunk rotation is assessed in E1 with the simultaneous
angular displacement of both shoulders. In Figure 2(b) shoulder elevation
is detected in E3 through shoulder displacement in Y regarding joint 1.

4.3 Classification Results

When applying the RB and performing LOSO CV to the NN approach,
we obtained the average results given in Table 3. For the NN we explored
one to two layers with 16, 64, and 96 hidden units with adaptive learning
rate. We apply ‘ReLu’ for C1 and ‘Tanh’ for C2 activation functions and
‘Adam’ optimizer with mini-batch size of 5.

As we can see in Table 3, the NN method performs better for the
E2 and E3, with a higher Pmin value, meaning the RB handles better E1.
This suggests that the NN may work better in single labeled cases. Also,
the high levels of standard deviation in both methods suggest that the ap-
proaches could benefit from more exercise examples from more patients
to improve generalization ability.

(a) Shoulders angles over time to detect Trunk Rotation in E1.

(b) Shoulder displacement in Y to detect shoulder elevation in E3.

Figure 2: Examples of kinematic variables variation over time.

Precision Recall F1− score HammingLoss

E1RB 0.756 ± 0.14 0.783 ± 0.12 0.767 ± 0.12 0.11 ± 0.06
E2RB 0.555±0.17 0.666±0.17 0.602±0.17 0.187±0.08
E3RB 0.697±0.27 0.71±0.26 0.701±0.26 0.126 ± 0.11
E1NN 0.692±0.23 0.678±0.25 0.679±0.24 0.187±0.15
E2NN 0.673 ± 0.21 0.675 ± 0.19 0.668 ± 0.19 0.182 ± 0.11
E3NN 0.785 ± 0.22 0.783 ± 0.21 0.783 ± 0.22 0.153±0.14

Table 3: Average results for the rule-based (RB) and Neural Network
(NN) methods.

5 Conclusions
We conclude that our method assesses distinct compensation patterns dur-
ing upper extremity exercise performance pretty well from 2D pose data.
In future work we want to leverage more data to achieve better label dis-
tribution and representativeness.
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