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Real-Time 3D Tracking of Simple Objects with an RGB Camera

Student Lino Pereira1

lino.cp95@gmail.com

Student Bernardo Ferreira1

bernardoppferreira@gmail.com

Prof Alexandre Bernardino2

http://www.isr.tecnico.ulisboa.pt/~alex

1 Instituto Superior Técnico, 1049-001 Lisboa, Portugal
2 Institute for Systems and Robotics, Instituto Superior Téc-
nico, 1049-001 Lisboa, Portugal

Abstract

This work, intends to improve a monocular region-based tracking algo-
rithm using an RGB camera. The algorithm to be improved, derives from
a particle filter where each particle represents a hypothesis of the state of
the object in 3D. However, the literature mentions that the particle filter
(PF) uses a very limited importance distribution to propagate the parti-
cles, which easily leads the filter to degenerate and loose track of the
object. Given the limitation of the PF, an unscented particle filter (UPF)
is proposed. This one obtains an approximation to the optimal importance
distribution, by adding a current observation of the state.

In order to compare the proposed algorithm with the previous one,
both are implemented and several real and simulated experiments with a
simple object are performed. From the results obtained, is shown that the
filters are successful, with the UPF being more robust.

1 Introduction

The most known methods to track an object using an RGB camera, are
the methods based on 3D reconstruction and the ones based on test hy-
pothesis. The first methods, start by using the visual information of the
2D image to reconstruct the pose of the object in 3D and the other ones,
consists in generating numerous hypothesis about what could be the ex-
act state of the object in 3D, and test each hypothesis from the 2D image
information. The advantages of 3D reconstruction is that it’s fast and
easy to localize the object of interest, however, they are easily affected by
noise in the image. On the other hand, the last methods are more precise
because the image’s noise is not taken into account, yet, they are very
slow and poor in localizing the object. The main intent to use the UPF is
to combine both methods to get the advantages of both. Thus, by defin-
ing the particles as 3D object’s state hypothesis and introducing a current
measurement of the object’s state through a 3D reconstruction process, an
hybrid algorithm is formulated.

In Bayes perspective and under the Markov assumption, the problem
is to recursively estimate the posterior distribution of the current state
xt conditioned on all available observations z1:t = {z1, ...,zt}. One just
needs to define some initial prior p(x0), state transition p(xt |xt−1), and
observation p(zt |xt) probabilities, in mathematical terms [5]:

p(xt |z1:t) ∝ p(zt |xt)
∫

p(xt |xt−1)p(xt−1|z1:t−1)dxt−1. (1)

However, the equation (1) is intractable, and for this reason many kind of
numerical approximations, like the methods based on particles, have been
developed. They represent the posterior distribution as N weighted set of
Monte Carlo samples

{
x(i)t ,w(i)

t

}
, i = 1, ...,N, also known as particles,

and by the law of the big numbers, the bigger the number of particles the
lower is the variance of the approximation error [6]. Unfortunately, it’s
often impossible to sample directly from the posterior distribution, so a
known and easy-to-sample distribution q(x(i)t |x

(i)
0:t−1,z1:t), called impor-

tance distribution is applied. By drawing samples from this distribution,
a recursive estimate for the importance weights can be derived [6]:

w(i)
t ∝

p(zt |x
(i)
t )p(x(i)t |x

(i)
t−1)

q(x(i)t |x
(i)
0:t−1,z1:t)

w(i)
t−1. (2)

This type of methods exhibit a phenomenon called degeneration. This
happens when some particles get all the weight and a lot of them get
insignificant. To prevent this, a process of resampling is implemented
to replicate the particles with high weights and discard the lower ones

[6]. Doing this, brings more particles to regions of high likehood, which
not only contributes to get better estimates, but also to avoid the particles
from moving wrongly in the state space. One filter that derives from these
type of methods, is the particle filter, that uses the simple state transition
probability as the importance distribution. Yet, the literature mentions
that in this type of methods, the most critical design issue is the choice of
importance distribution. If the likelihood function is to narrow, or if it lies
in one of the tails of the prior distribution, even the resampling process
might not be enough to prevent degeneration [6]. In a Markov process,
the optimal importance distribution in terms of minimizing the variance
of the weights is given by:

q(xt |x0:t−1,z1:t) = p(xt |xt−1,zt). (3)

However, sampling from this distribution is non-trivial, because of the
dependence on the atual observation zt , thus, with the intent of getting an
approximation to this distribution, the unscented particle filter introduced
by Van Der Merwe et al. [6] was developed. This one uses the unscented
kalman filter (UKF), which introduces a current observation together with
a Gaussian approximation of the state, as the importance distribution to
propagate each particle [6]:

q(x(i)t |x
(i)
0:t−1,z1:t) =N (µ

(i)
t ,P(i)

t ), i = 1, ...,N. (4)

2 Methodology

The algorithm to be improved in this work is the one developed by M. Ta-
iana et al. [5], in which to track a homogeneous ball, the state is defined as
the position and velocity of the ball in space xt =

[
x y z ẋ ẏ ż

]T .
The algorithm is based on a particle filter, where each particle represents
a 3D hypothesis of the ball’s state, this allows one to overcome the in-
version of the nonlinearity caused by the camera projection model and
enables the use of realistic 3D motion models as the state transition prob-
ability [5]. On the observation model, each particle project a few tens of
points onto the current image of a video frame from his state hypothesis,
one set inside and the other outside the 3D object’s silhouette. With the
chromatic information of these points, a normalized color histogram for
the inner region and another for the outer region, are constructed along
with the normalized color histogram of the object’s color model [5]. The
likelihood of a particle is considered high, if the inner and model his-
tograms are similar and at the same time, the inner and outer histograms
are different. To express this mathematically, a metric D is constructed,
based on the Bhattacharyya coefficient that quantifies the similarity be-
tween histograms. At last, the observation probability of each particle is
modeled by a Laplacian distribution over the metric D, where ε was set
to ε = 1/30 [5]:

p(zt |x
(i)
t ) ∝ e

−
D
ε . (5)

2.1 Proposed algorithm

On the previous algorithm, a motion model is applied to predict the next
state of the particles, for the UPF, it’s the unscented kalman filter that
is used. This filter returns a prediction considering a motion model and a
current observation, where the observation is a measure of the 3D position
of the ball. The measurement process, consists in a method to estimate
the current 3D position of the ball from an image. In order to accomplish
this, a few steps must take place. The method first starts with color seg-
mentation to identify the whereabouts of the ball. The ball is identified
in the image through the highest pixel probability, corresponding to the
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reference histograms created based on the ball’s color model, and the im-
age is then binarized with the use of Otsu threshold [3] to distinguish the
ball from the background. Next, with the use of morphological operators,
the possible noise that survived the threshold, is removed and the edges
of the ball smoothed. The contour is extracted with the Moore Neighbor-
hood [4] tracing algorithm and these points are used to extract an ellipse
with the RANSAC [2] algorithm. With the best fitted ellipse, the 3D po-
sition is then obtained through monocular reconstruction [1] that uses the
prior information of the ball radius and camera parameters to estimate a
position from the ellipse fitted to the blob.

3 Results & Discussion

In order to access and compare the performance of the PF and UPF, sev-
eral tests over simulated trajectories and real experiments were made. Re-
sults for a simulated circular trajectory and for a real free-fall trajectory
are shown in this section. For both filters, there are adjustments parame-
ters that affects the performance. The principal and only parameters tested
are: the number of particles (the higher the number the better are the esti-
mates), the distance between the inner and outer points (that controls the
measurement error) and the process model noise (that regulates the dis-
persion of the particles in the state space). For all the plots, the tests were
made using N = 1024 particles, where the red lines represent closer inner
and outer points, the green corresponds to points a bit more distant than
the red ones, and the blue even more distant. The solid, dashed and dotted
lines, represent three different process noise configurations. For all tests,
the motion model used corresponds to a constant velocity model. To an-
alyze the influence of the number of particles, the root mean square error
(RMSE) was used and to examine the influence of the silhouette distances
and process noises, precision plots were created. This plots instead of the
RMSE, can catch if a filter looses track of an object, and for filters like
these, this scenario often happens. Precision plots express the percentage
of estimates that possess an error below a given error threshold, as the er-
ror threshold increases. The considered error threshold is the relative error
δ . Therefore, the following equation is used to compute the percentage of
the estimates F , that possess an error below an arbitrary relative error δ :

F =
100
N

N

∑
i=1

H
(

δ − ||xi− x̂i||
||xi||

)
[%] (6)

where H is the Heaviside function, N represents the number of estimates
that belong to the experience, and xi and x̂i corresponds respectively, to
the exact state and the state estimate i. Both filters deal with random
variables, thus, making tests with the same parameters originates different
results and for this motive each test is repeated 100 times.

N 128 256 1024
PF 6.32×108 392.35 24.13
UPF 27.05 26.04 23.98

Table 1: RMSE error in mm using different number of particles.

In the table 1 are exposed results of RMSE of the position estima-
tions for a given experience, varying only the number of particles. One
can verify that the results coincides with the literature, once as the number
of particle increases, better are the estimates, but the lower is the compu-
tational efficiency. Comparing the real results against the simulated ones
(figure 1 and figure 2), it is quite visible, that for the real experiences, the
relative error is bigger, at least the double, which make sense, because
the simulator does not take into account the real phenomena of the world.
Other aspect is the high sensitivity that the PF exhibits for different pro-
cess noises and different distances between the inner and outer points (see
figure 1(a)). For this filter, the process noise is directly related to the ac-
celeration of the object and for one order of magnitude below or above
the process noise used by the solid lines, the filter looses track of the ball
and degenerates, which leads to wrong estimates. For the dotted lines
the problem is the low scattering of the particles, and so, the filter cannot
keep up with the object’s movement. For the dashed lines, the particles
get scattered too much and deviate from the ball which degenerates the fil-
ter. For the UPF the estimates of the position are all adequate for different
process models. The real trajectory is a free-fall in which the ball collides
with the ground multiple times, that makes the ball to rapidly change it’s

movement. That’s why for the PF, the obtained results are very poor (see
figure 2(a)). After an impact, the particles easily loose track of the ball
and hardly recover to regions of high likelihood. On the other hand, one
can see the real advantage of the UPF. If the particles loose track of the
ball (mainly after an impact), the current observation acquired from a 3D
reconstruction based method that easily localize the ball, will pull the par-
ticles to regions of high likelihood. Despite using such a limited motion
model for this trajectory, the UPF obtains satisfactory results (see 2(b)).

(a) PF. (b) UPF.

Figure 1: Position estimates for the simulated circular trajectory.

(a) PF. (b) UPF.

Figure 2: Position estimates for the real free-fall trajectory.

4 Conclusions

The results obtained in this work, allows one to conclude that the imple-
mented filters function with success, if the filters initial parameters are
adjusted accordingly to the object’s trajectory. For high uncertainty tra-
jectories like a free-fall, the PF easily degenerates, contrarily, the UPF
was successfully in all tests for any trajectory, which allows one to con-
clude that it’s way more robust against all the three tested parameters. As
future work, different observation models can be developed in order to
make the algorithms usable for more complex objects.
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