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Abstract

In object detection frameworks based on deep learning, the pre-established
anchor boxes are critical to ensure an adequate localisation of the objects
that should be detected. As some datasets comprise objects of distinctive
shapes and specific sizes, this work describes a methodology to adjust the
anchor attributes to the dataset used for the task at hand.

For that, an analysis of the dataset’s bounding box properties is per-
formed, and k-means clustering is applied to identify the rectangular box
scales and ARs that yield the best representation of the object dimensions
and shapes existing in the dataset. The particularities of four popular ob-
ject detection meta-architectures were taken into account to ensure that
the output of the proposed method is fully compatible with the anchor
box settings of different networks. The application of this methodology
is illustrated using a private cervical cancer dataset.

1 Introduction

Recently, the popularity of deep learning models for object detection tasks
has arisen, owing to their robustness and promising performances. These
algorithms aim at localising the objects in each image in terms of rect-
angular bounding boxes that mark the region of the object, while also
distinguishing their class [1]. Most model architectures devised for this
purpose achieve the detection step through the proposal of object regions
and the regression of their bounding box coordinates, with many resorting
to anchor boxes, or box priors, to generate the object proposals [2, 3, 4].

Anchor boxes are bounding box templates extracted at pre-defined lo-
cations of the feature map of the convolutional neural networks (CNNs)
that define the object candidates assessed by the network. Their dimen-
sions may be directly set [5] or specified in terms of the scales and aspect
ratios (ARs) combined to define the candidates extracted at each location
[2, 3]. Due to their role in object proposal, anchor box settings are critical
to ensure the reliable localisation of the objects in the image; hence, the
anchor box scales and ARs ought to be carefully defined, bearing in mind
the specificities of the annotated objects in the dataset.

Although the anchors considered in the most common object detec-
tion architectures are designed to encompass myriad object scales and
shapes, in some scenarios the object proposals generated using generic
anchors might not be able to match the objects that should be detected.
Thus, this work presents a methodology to adjust the anchor properties to
the type of objects existing in a specific dataset, enabling a more targeted
object proposal procedure. Clustering is used to identify the most rep-
resentative bounding box dimensions and shapes present in the dataset,
which are mapped to the parameters of specific object detection CNNs,
taking into account their design differences. Finally, the application of
this methodology is demonstrated using a private cervical cancer dataset.

2 Methodology

The idea of exploiting dimension clusters to adjust the box priors used
for object detection was already proposed in [5]. In that work, k-means
clustering is applied to the bounding box width and height values of the
training data to find several cluster centres, each associated with distinct
anchor dimensions. The optimal number of anchors is established by find-
ing the number of centres that allows a high average intersection over
union (IoU) between the anchors and the ground truth boxes and does
not increase substantially the computational complexity of the algorithm.

The dimensions (height and width) that characterise the cluster centres
are used directly to define the anchor boxes considered by YOLO.

However, in other object detection models (such as Faster R-CNN,
SSD and RetinaNet), the size and shape of the anchor boxes are parame-
terised separately through the specification of several box scales and ARs,
combined to determine the dimensions of the anchors extracted from the
feature maps. Ergo, the proposed methodology applies the k-means al-
gorithm in 3 distinct domains: the bi-dimensional height and width space
(described above); and the domains of bounding box scales and ARs as
separate variables, since this enables an easier adaptation to the way the
anchor boxes are defined in the other meta-architectures. In this case,
the within-cluster sum-of-squares distance metric is minimised to find the
optimal clustering centres for each k value.

2.1 Aspect ratio and scale clustering

To find the optimal anchor shapes, the ARs of the dataset’s bounding
boxes are computed as the ratio between the width and the height of each
bounding box. The anchor scales are computed as the ratio between the
area of each bounding box and the area of the whole image. The k-means
clustering algorithm is applied independently to the scale and AR values,
finding the optimal cluster centres for each of these variables. For both
properties, several k (number of cluster centres) values are tested and eval-
uated based on the sum of squared distances between each bounding box
instance and its nearest cluster centre.

2.2 Selection of the optimal anchor scales

More cluster centres are expected to result in anchors more representa-
tive of the dimensions of the objects in the dataset, as verified in [5];
yet, the consideration of more bounding box scales and ARs implies the
generation of many more object candidates during the training and execu-
tion of the algorithm, subsequently increasing its computational burden.
Thus, the selection of the number of scales and ARs used in the detection
algorithm is accomplished considering the trade-off between the sum-
of-squares distance - representative of the intra-cluster variability, which
should be minimised - and the inherent computational complexity.

In addition, the design differences of the current state of the art detec-
tion architectures should also be taken into account for the specification
of the anchor box settings, since they might affect the anchors extracted in
the object proposal step. To address these variations, four architectures -
YOLO [5], Faster R-CNN [2], SSD [3] and RetinaNet [4] were examined.

One of the key disparities among these frameworks is associated with
the convolutional layers from which the object proposals are retrieved:
YOLO and Faster R-CNN apply the anchors to a single feature map,
whereas SSD and RetinaNet propose boxes of different scales by extract-
ing candidates from network layers of varying depths. Moreover, as afore-
mentioned, the YOLO model contrasts with the remaining architectures
by defining the anchor box dimensions directly, instead of setting the box
priors through scale and AR combinations.

Even though SSD and RetinaNet both resort to feature maps of mul-
tiple depth levels to propose objects at different scales, in the SSD frame-
work each extraction layer is associated with a single scale, whereas Reti-
naNet allows the specification of more than 1 sub-scale for each level.
Therefore, in the SSD model, the number of feature maps used for anchor
generation is equal to the number of object scales considered, and there
is a direct mapping between the selected scales and the anchor extrac-
tion layers. Alternatively, in the RetinaNet framework, a feature pyramid
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Figure 1: Graphical representation of some metrics according to the k value used in the experiment: (a) average IoU between the cluster centres and
the dataset’s objects, for the width/height clustering; within-cluster sum-of-squares distance for the (b) scale and (c) aspect ratio values; (d) average
absolute difference among the aspect ratio values in each set.

network is used to provide the convolutional layers that are the basis for
anchor generation, being characterised by feature maps with a fixed con-
secutive resolution difference (a factor of 2), designated as octave levels.
Accordingly, to take advantage of the scale values found through the pro-
posed methodology, a careful correspondence between the selected scales
and the architecture-specific parameters must be conducted.

2.3 Identification of the most discriminating aspect ratios

Given that the ARs influence the object shapes that will be more easily
detected by the algorithm, the established values should be sufficiently
discrepant to allow the examination of a diverse set of object shapes. To
ensure this diversity, in the proposed approach, the choice of the number
of ARs is based not only in the sum-of-squares distance, but also in the
average absolute difference between the several AR values in each of the
possible sets (inter-cluster variability).

3 Application to a private cervical cancer dataset

The approach described was applied to a private dataset comprised of
1489 microscopic images in total, acquired from liquid-based cervical cy-
tology samples of 21 patients with a µSmartScope device [6]. This dataset
includes 2436 bounding box annotations of abnormal regions (indicative
of cervical lesions, illustrated in fig. 2), provided by a clinical expert from
Hospital Fernando Fonseca. As the dataset had been previous split in
training and test subsets according to a 80%/20% ratio, only images from
the training set were analysed to establish the anchor settings.
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Figure 2: Examples of images from the cervical cancer dataset with the
bounding boxes of abnormal cells outlined (in red).

The range of k values tested in the clustering experiments was limited
to a maximum of 15 for the dimensional clustering case and of 9 for the
scale and AR studies to limit the number of object candidates generated.
The results obtained for the several ks are depicted in fig. 1. For each k
value, the final anchor dimensions, scales and ARs were obtained from
the coordinates of the corresponding cluster centres.

As expected, more cluster centres lead to anchors more representative
of the dimensions of the objects in the dataset, associated with a lower
sum-of-squares distance error and a higher IoU metric. However, it is
important to select a number of cluster centres associated with a reason-
able number of anchors. Hence, adequate values for the anchor dimen-
sions used in YOLO (directly defined in the image domain) would be
the ones obtained for k = 9, for instance, resulting in the anchors of nor-
malised dimensions (0.36,0.38), (0.30,0.20), (0.15,0.39), (0.19,0.19),
(0.3,0.58), (0.30,0.29), (0.23,0.28), (0.67,0.67), (0.57,0.28). An ap-
propriate choice for the scale values could be the scales of the cluster cen-
tres for k = 6 (0.06,0.13,0.25,0.44,0.66,0.91), since these would produce
a restricted number of object proposals while keeping the same number of
feature maps used in the original implementation, which is an advantage
when pre-trained models are used.

The selection of the ARs should be grounded not only in the intra-
cluster variability, but also considering how well-separated a cluster is
from other clusters. Even though the ARs reported for k = 7−9 yielded
larger differences, their consideration would increase the computational
burden of the model. As the ARs clustered for k = 6 (0.68, 1.18, 1.90,
3.63, 7.47, 14.55) exhibit an average difference metric similar to the ones
produced by more ARs, these would be suitable for the dataset analysed.

4 Discussion and conclusions

This work presents a method to optimise the localisation step in object
detection networks, achieved through the adjustment of the anchor boxes’
settings to the properties of the dataset used. The performed analysis ad-
dressed the factors that may influence the establishment of the anchors, in
particular the similarity between the extracted anchors and the dataset’s
objects, the computational complexity of the model, the variety of anchor
shapes and the ability to implement the anchors of choice in the exist-
ing detection models. Additionally, in studies that rely on pre-trained
networks for fine-tuning, for architectures whose number of layers is di-
rectly associated with the anchor scales extracted, the number of object
proposal layers should be the same as in the original model, to fully take
advantage of the pre-trained weights.

Nonetheless, the experiments reported still correspond to exploratory
work and further tests ought to be conducted. Future work should include
the examination of the impact of the anchors’ setup in the final detection
performance through the comparison of the adjusted anchor settings with
the default ones, as well as a characterisation of the computational burden
yielded by some of the possible anchor configurations. Different cluster-
ing approaches, as well as more informative distance metrics for cluster
validation, should also be explored.
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