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Abstract

Condition-Based Maintenance (CBM) using intelligent prognostic strate-
gies that estimate Remaining Useful Life (RUL) has been applied in real
scenarios to reduce maintenance costs and down times of machinery. When
applied to aircraft maintenance, these models have also been developed
in collaborative platforms that make use of data from similar components
both in the same and different aircraft.

Even though RUL predictors have been presenting potential opportu-
nities for developing federated scenarios after aggregating machine learn-
ing models, accuracy improvements of these models have not been eval-
uated yet, mainly due to absence of aircraft data.

In this work, we propose two collaborative federated approaches to
determine RUL prognosis. The first approach aggregates models of equiv-
alent subsystems located in the same airplane, while the second approach
aggregates equivalent subsystems on different airplanes. We analyse 2
different systems from the aircraft: Integrated Cooling System (ICS) and
Cabin Air Conditioning and Temperature Control System (CACTCS). We
present the study of possible sensor data combinations according to the
two proposed collaborative approaches.

After analysing the datasets description and failures, we determine
that there are 19 models which can be integrated under the first federated
approach, while for the second approach, there are 40 models which can
be used to evaluate performance improvements in terms of distance.

1 Introduction

Prognostic is a very promising paradigm that permits strategies as Con-
dition Based Maintenance (CBM) for reducing maintenance costs and
downtimes of machinery such as aircraft systems [1]. CBM uses Prognos-
tics and Health Management (PHM) techniques and metrics as Remaining
Useful Life (RUL) to schedule maintenance tasks which are based in the
duration left for a system before it fails [4].

RUL estimators are categorized into three types: model-based ap-
proaches, data-driven approaches, and fusion approaches [7]. Model-
based approaches require physics machinery knowledge, while data-driven
approaches analyze data using statistics and maths [1].

Strategies for developing data-driven approaches are based on the use
of Artificial Intelligence techniques which have been deeply explored in
the context of time series forecasting [4]. On the other hand, in order
to reduce the distance between the estimation and the theoretical RUL,
a recent collaborative paradigm named Federated Learning has been in-
tegrating machine learning models based on neural networks [6]. These
evaluations have been done using virtual data engines as Turbofan but the
aggregation of other equivalent airplanes subsystems has not been evalu-
ated yet. Thus, in the present document, the aggregation of subsystems of
the same airplane and different airplanes is considered.

2 State of the Art

The distance between RUL estimations and theoretical RUL for Turbo-
fan engines has been reducing using direct computation approaches [6].
These approaches have been applied because degradation trends have
been identified in specific time sensor data [5]. Nevertheless, due to the
noise of sensors, finding a tren degradation requires of feature selection
processes and the use of Health Indicator (HI) measures as the input for
RUL computation [2, 3, 4].

The computation of virtual HI based on-flight phases aggregation [2]
and feature selection under 3σ rule [4] has been presenting promising

results for RUL computation of Boeing 787 Systems. However, the in-
tegration of HI estimators of equivalent subsystems of different airplanes
has not to be done because federated scenarios on Boeing 787 datasets
have not been identified yet.

3 Proposed Approach

Health estimator based in physics models have been limiting the scalabil-
ity of PHM systems because collaborative scenarios have been depend-
ing on centralized processing architectures. So, estimators based in data-
driven approaches through the use of neural networks have been gaining
interest after collaboratively improving the accuracy of prognostic mod-
els under a newfangled parading named Federated Learning [6, 8]. Using
the global loss function of the Equation 1, federated techniques based on
Gradient Descent minimization improve the accuracy of equivalent prog-
nostics systems in private aggregations of machine learning models [8].

F(w),
∑

N
j=1 n jFj(w)

n
(1)

Accuracy improvements in terms of distance between theoretical RUL
and RUL estimations have done after iteratively averaging prognostic
models (Fj) on a Federated Server, obtaining a central model (F(w))
which contains the knowledge of a defined number of federation partici-
pants (n) [6].

4 Experimental Setup

4.1 Datasets

For this work, data collected from the Cabin Air Conditioning and Tem-
perature Control System (CACTCS) pack and the Integrated Cooling Sys-
tem (ICS) pack of Boeing 787 airplanes have been available as two datasets.
The CACTCS pack is part of the Environmental Control System (ECS)
and provides cabin temperature management and control, while the ICS
pack is one of the three main packages which provide cooling flow to
the primary electronics, the galley, and the forward cargo air conditioning
system.

4.1.1 Cabin Air Conditioning and Temperature Control System

This dataset comprises data extracted from 13 different airplanes, in which
data of sensors, faults and removals are useful for a posteriori RUL com-
putation. Sensor data were extracted from 2 Packs systems using a sam-
pling rate of 1Hz (sample per second). For each CACTCS pack, the data
were retrieved from 45 different anonymized sensors. Here 23 sensors
catch pack general information, while the other 22 sensors catch informa-
tion of 2 equivalent Cabin Air Condition (CAC) components.

The faults data contains three types of failure reports that have been
occurred during flights. Flight Deck Events (FDE) faults have been auto-
matically generated during flights after presenting anomalies in sensors,
while Aircraft Technical Log (ATL) and Predictive Maintenance (PM)
faults have been identified by the maintenance team. Due to PM faults
present removal/replacements dates given by technicians, we consider us-
ing these faults for HI prognosis.

4.1.2 Integrated Cooling System

This dataset comprises information collected of 17 Boeing 787 airplanes
during 21 months. Similarly to CACTCS, ICS is composed of sensor
data, failures and removals. However, FDEs are not reported over time,
closing to use failure information provided by technicians.
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Figure 1: 1st Federated approach: Subsystems of different airplanes

ICS sensor data was retrieved from 70 anonymized sensors, which
include 4 equivalent Supplemental Cooling Unit’s (SCU), 2 SCU Motor
Controllers (SCU-MC) and 2 PUMPs. However, as failures and removals
are known only for SCUs, we propose to use only 9 sensors as input
of an SCU RUL predictor and reuse the four of them in collaborative
approaches.

4.2 Dataset equivalent terminology

To aggregate HI estimators of equivalent components of CACTCS and
ICS with federated techniques, Boeing 787 systems terminology of the
Table 1 has to be generalized to describe the identified approaches.

Federated Learning CACTCS ICS
Subsystem Component Unit
Model Comp. HI predictor Unit HI predictor
Federated Model Fed. HI predictor Fed. HI predictor

Table 1: Generalized terminology used in collaborative approaches

CACTCS dataset is composed of sensor data obtained by different
components, while ICS dataset contains units. Thus, in order to adopt
the same terminology in a Federated context, systems correspond to the
dataset and subsystems correspond to components or units, respectively.

5 Proposed Implementation

5.1 Federating subsystems of the same airplane

Figure 2: 2nd Federated approach: Subsystems of the same airplane

The approach illustrated in the Figure 2 assumes that some subsys-
tems (same color boxes) per airplane are equivalent. In other words, the
Remaining Useful Life of the 4 CAC components of CACTCS or 4 SCU
units of ICS can be prognosticated using the same model.

Federation of equivalent subsystems does not require sharing mod-
els of different airplanes, but doing that, the prognosis accuracy of the
federated model could be already improved.

5.2 Federating subsystems of different airplanes

In the Figure 1, the federation of equivalent subsystems (same color boxes)
of different airplanes is illustrated. This approach generates one Federated
Model per subsystem after aggregating models of different airplanes.

In the case of CACTCS, is assumed that the RUL of the 4 CACs of
the left and the right packs can not be foreseen with the same model, i.e.,

the input sensors’ data could be different for each subsystem. For ICS,
this approach assumes that both SCU and PUMP are different.

6 Conclusions and Future Work

Due that the number of airplanes and failures are different for each dataset
subsystem, the number of nodes for the both federated approaches are de-
tailed in the Table 2. For the first federated approach, 10 CACTCS models
and 9 ICS models contains the information of a same subsystem but lo-
cated indifferent airplanes, while for the second federated approach, the
number of federated constituents varies according each L-th and SCU-th
subsystem. So, after developing and federating RUL predictors, improve-
ments of federated approaches will be evaluated in future work.

Dataset CACTCS ICS
Subsystems CAC (L1,L2,L3,L4) SCU(1,2,3,4)
Airplanes 13 17
Failures 24 22
1st Fed. Approach 10 9
2nd Fed. Approach 6, 6, 4, 5 7, 4, 6, 2

Table 2: Federated cases for CACTCS ans ICS datasets
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