
  

000 
001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
046 
047 
048 
049 
050 
051 
052 
053 
054 
055 
056 
057 
058 
059 
060 
061 
062 
063 
064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 

 

Abstract 
Nowadays, computer vision (CV) is widely used to solve real-world problems, 

which pose increasingly higher challenges. In this context, the use of 
omnidirectional video in a growing number of applications, along with fast 

development of Deep Learning (DL) algorithms for object detection, drives the 

need for further research to improve existing methods specifically developed for 
conventional 2D planar video. This work explores DL methods to detect visual 

objects in omnidirectional images represented onto plane through Equirectangular 

Projection (ERP).  It is shown that the error rate of object detection using existing 
DL models with ERP images depends on the object spherical location in the image. 

Then, a new object detection framework is proposed to obtain uniform error rate 

across the whole spherical image regions.  

1  Introduction 

Over the last decades, computer vision (CV) technology, through 
traditional or intelligent approaches, has been widely explored to solve 
real-world problems through advanced technology in many different 
domains, such as self-driving cars, accurate health diagnoses, agriculture 
operations improvement, remote surveillance and monitoring, etc [1]. 
Such systems are usually based on planar images captured from 2-
dimensional (2D) cameras, usually referred to as conventional cameras. 
However, new application requirements and fast technological advances 
are continuously posing new challenges which cannot be met by 
conventional cameras. Their limited field-of-view (FOV) and, 
subsequently, blind spots do not allow all view directions, including all-
around from the ground, mid-level above ground to sky, to be monitored. 
For instance, in outdoor smart surveillance systems, a conventional 
camera no longer meets the requirements posed by all types of possible 
intrusions in private properties or high security areas. In fact, nowadays 
intrusion may happen either physically at the front door or remotely 
through a flying drone. To cope with such new demands, omnidirectional 
vision has been evolving in several directions such as: object detection 
and identification, people recognition, vehicles traffic monitoring, etc., at 
the ground-level; monitoring buildings, balconies, or windows at the mid-
level; detect sky-level objects such as unmanned aerial vehicles (UAVs), 
which consist of autonomously or remote-controlled vehicles to fly over 
target areas . 

Deep Learning (DL) approaches have been heavily studied in the last 
few years and nowadays there are several frameworks capable of 
providing reasonable performance in many image and video processing 
tasks. However, currently available DL frameworks were designed to use 
2D data as input, while specific solutions for omnidirectional video are 
still open for further improvement and performance optimisation. This 
paper is motivated by this technological context, addressing performance 
optimisation of DL approaches for object detection in omnidirectional 
images representing the spherical domain as planar images through the 
well-known Equirectangular projection (ERP). The equirectangular 
projection defines each sphere point by a horizontal angle  𝜃 𝜖 [−𝜋, 𝜋[  
and vertical angle   𝜃 𝜖 [−𝜋/2, 𝜋/2[ . Then, given a sphere ∑, an 
Equirectangular image 𝑃 is obtained by sampling the spherical surface as 
follows [2]: 

 

𝑃(𝑖, 𝑗) =  ∑ (𝜃𝑖 , 𝜙𝑗) 

with ∀𝑖 , 𝜃𝑖 −  𝜃𝑖+1 =  𝛿𝜃 and ∀𝑗 , 𝜙𝑗 − 𝜙𝑗+1 =  𝛿𝜙   

 

Although ERP has become a popular representation format to store 
and transmit omnidirectional or 360º video content, it produces significant 
geometric distortions in regions near the poles due to non-uniform 
sampling density, which results from equal distances in the visual scene 

being represented by a different number of equally spaced pixels. Thus, 
the aspect ratio of the any object depends on its spherical position which 
makes object detection harder to achieve. Regarding the use of DL based 
approaches, in addition to the above-mentioned challenges, the lack of 
ERP labeled image datasets leads to an effort to be made by researchers 
to construct a decent dataset in terms of size, annotation richness, and 
scene variability and complexity [3]. 

In this paper, we show how to overcome the above-mentioned 
problems in a DL-based object detection framework using 
Equirectangular images. Firstly, a dataset acquisition stage along with the 
description of the steps required to reach the final dataset is described for 
better understanding the input of the proposed framework. Afterwards, 
we benchmark algorithms’ performance on conventional and ERP 
datasets to identify the main problems concerning those techniques. 
Finally, a framework which allows object detection tasks to provide 
improved results is described in detail.   

2  360º Image Dataset  

In the dataset acquisition process, the first step consisted of 
contributing to decrease the lack of labelled Equirectangular images. For 
that purpose, a 360º video camera was used to capture an urban 
environment to include different visual objects of all possible regions of 
spherical images in the dataset. To that purpose, the camera was firstly 
placed on a highly congested traffic locations to produce video recordings 
where people and vehicles were visible. Then, to enrich the dataset with 
high diversity viewpoints, object poses, and weather conditions, the same 
camera was mounted on the roof of a car, and videos were recorded while 
the car was moving. Finally, to fill the lack of aerial objects an unmanned 
aerial vehicle was controlled over pre-defined regions, simulating aerial 
intrusion in a private property, while the 360º camera was recording 
playing the role of an omnidirectional surveillance camera. Afterwards, 
the resulting video shots were processed to extract the most representative 
ERP video frames, originating a total of 779 omnidirectional ERP images 
that were labelled using an annotation tool to identify object classes and 
locations considering the following class labels: car, truck, bus, 
motorcycle, person, and unmanned aerial vehicle. 

2.1  Reference Performance on 360º Dataset 

After the 360º dataset acquisition stage, a reference performance 
evaluation of currently available deep learning (DL) networks was carried 
out, using conventional planar images with small FOV when compared 
with 360º images. Since the proposed test experiment required a 
conventional image labeled dataset, we investigated open-source 
available datasets related to urban environment. Among the wide range of 
available datasets that were found, the Cityscapes [4] dataset was chosen, 
due to its huge diversity and application scenarios. 

Therefore, taking as input, part of the Cityscapes dataset and 
preserving its primary organization (training, validation, and testing 
subsets), DL algorithms were trained through transfer-learning techniques 
to compare their performance on Cityscapes dataset and on the ERP 
dataset acquired in the scope of this work. 

Reference performance experiments consisted of training Single-Shot 
Detection (SSD) [5] and You Only Look Once (YOLO) v3 [6] networks 
on the conventional image dataset (Cityscapes) and compare the resulting 
accuracy performance on both datasets. Considering that Cityscapes 
subset does not contain all object classes covered by our 360º image 
dataset, we have only included results for car, bus, and person labels.  
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AP@0.5 (%) mAP@0.5 

(%)  car bus person 

Cityscapes 

subset 

SSD 73.2 65.8 74.3 71.1 

YOLOv3 76.3 67.1 75.3 72.9 

360º 

dataset 

SSD 47.1 28.3 41.5 39.0 

YOLOv3 49.6 30.1 44.7 47.7 

Table 1: Accuracy of DL algorithms trained on conventional image 
dataset, measured on conventional and 360º dataset. 

 
Despite the fact that accuracy significantly decreases from 

conventional to 360º dataset (as expected), both algorithms have 

demonstrated more difficulty to detect objects near the image centre than 

elsewhere (e.g. accuracy differences up to 40% were found between 

centre regions and others. Figure 1 depicts an example of a car located 

in the mid-region, which was not detected as the remaining objects. 

 
Figure 1: Predictions in ERP images. DL algorithms show more difficulty 
detecting objects in centre regions. 

 
Hence, we have considered the whole 360º dataset to evaluate the 

False Positives (FP) rate by image region. We have noticed that the 
described metric does not follow a uniform pattern, with higher values 
(63%) in the centre of the image than both left and right regions (16% and 
21%, respectively). Given the reference performance above, the main 
drawbacks are identified as the lack of accuracy of existing models and 
the correlation between non-detected objects and image regions.  

2.2 360º Dataset Training 

To tackle the previous limitations domain-specific training with data 
augmentation approaches was carried out. We used a set of DL algorithms 
applied to our 360º dataset to detect cars, UAVs, and people, including 
two variations of YOLOv4, YOLOv3 and tiny-YOLO on both versions 
(3 and 4). Moreover, two variations of SSD and Mask R-CNN [7] were 
also evaluated.  

The benchmarking analysis focuses on providing a detailed 
evaluation of the trained models, taking into consideration three 
fundamental performance metrics: mean average precision (mAP), to 
evaluate models’ accuracy, floating-point operations per second (FLOPs), 
considering the computational cost associated with each deep neural 
network, and, finally, the model complexity, given by the number of 
learning parameters. Each model inference speed has also been computed 
by measuring the elapsed time between receiving an image and when 
predictions are available. 

 

DL Network Parameters 
G-

FLOPs 
mAP 

Inference 

Time (ms) 

Mask R-CNN 250 628,94 89 2011 ± 4,23 

Standard YOLOv4 244 127,294 86 349 ± 5,83 

YOLOv4 - 800x448 244 123,416 82 403 ± 5,95 

Standard YOLOv3 235 139,558 80 398 ± 6,41 

SSD 512x512 286 163,262 73 451 ± 8,23 

Tiny-YOLOv4 22 6,793 65 171 ± 3,21 

SSD 300x300 97 56,452 61 220 ± 5,46 

Tiny-YOLOv3 33 5,454 59 193 ± 2,98 

Table 2: Results of DL algorithms trained on 360º images. 

 
Results presented in Table 2 demonstrate great improvements in 

terms of accuracy on detecting objects in ERP images compared to the 
same algorithms trained on Cityscapes subset (Table 1). However, the 
same experiment to provide FP rate by image region applied to these 
models has shown that this framework does not allow to meet high-
accuracy requirements of most demanding applications. 

3  Proposed Approach 

The proposed framework consists of adding a pre and post-processing 
stage to the default object detection framework, which provides 
predictions just taking an image as input. Due to the fact that objects 
located at the center tend to be smaller, which could crucial to justify 
different FP rates, we include two pipelines: one focusing the whole 
image, and another just concentrating on the middle region. To perform 
the second pipeline, we divide the middle region into two sub-regions, as 
depicted in Figure 2. 

To evaluate framework’s performance standard YOLOv4 was used as 
DL algorithm on both pipelines. Then, the resulting predictions from 360º 
dataset inference, were, successively, compared to the labelled objects to 
produce the final results. Although the measured inference time has 
increased, mid-level FP rate have demonstrated improvements, which 
leads to a more uniform FP rate by image region. Measured values have 
shown the referred metric has decreased from 63%, in the initial 
experiments, to 39% on the proposed framework. 

 
Figure 2: Proposed framework architecture with two stages. Results are 
aggregated with predictions from mid-region sub-divisions.  

4  Conclusion 

Automatic object detection in ERP images with high-level  accuracy 
created new problems that did not occur before in conventional images. 
Object distortion and unusual view pose as well as very-high image 
resolution tend to give rise to an extremely wide range of objects 
dimensions and aspect ratios across an image. Our initial experiments 
have demonstrated that a conventional framework does not provide 
uniform accuracy results across the whole image. The framework 
proposed in this paper allows to make non-detected objects by image 
region more uniform through two parallel pipelines: one for the whole 
image and the other focusing on the most problematic region, the center. 
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