
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

Federated Learning Optimization

Miguel Fernandes
mfernandes@student.dei.uc.pt

Joel P. Arrais
jpa@dei.uc.pt

Catarina Silva
catarina@dei.uc.pt

Alberto Cardoso
alberto@dei.uc.pt

Bernardete Ribeiro
bribeiro@dei.uc.pt

University of Coimbra
CISUC - Centro de Informática e Sistemas
FCTUC-DEI - Departamento de Engenharia Informática
Coimbra, Portugal

Abstract

In a recent approach defined as Federated Learning (FL), a single model is
shared between a server and the clients instead of the data itself, reducing
the amount of data transferred. In addition, FL attenuates the privacy
concerns since each model is computed locally by their respective client
and only the model is shared.

Federated Learning is still a recent technology and, as such, much re-
search is yet to be done. This work presents the proposal and implemen-
tation of two Federated Learning algorithms and comparison with state of
the art.

1 Introduction

Federated Learning (FL) [1] is a rising decentralized learning technology.
While conventional Machine Learning methods require data to be central-
ized, Federated Learning allows multiple clients to learn a shared global
model without needing to send their local data to a server. In addition, all
of the model’s training is done locally and coordinated by a central server.

In a FL setting, the clients receive a shared model from the server
θt and train it with data which is only accessible to it. Afterwards, each
client sends the updated models to the server. In the server, the uploaded
models are aggregated in order to form a new model.

This work proposes two new methods which outperform the state of
the art (Federated Averaging and Federated Proximal) of Federated Learn-
ing: Federated Directional Congruent Learning (FedCong) and Federated
Momentum (FedMom). While the first is based on the directions of the
models’ updates, the second algorithm is based on the momentum of the
global model.

1.1 Federated Averaging

Federated Averaging (FedAvg) [1] is a FL algorithm which generates the
global model by periodically averaging the clients’ locally trained models
[1].

The algorithm starts by initializing a global model θt . Afterwards, at
the t Communication Round (CR), the server selects a random subset of
clients, K, and uploads the current global model to the clients. The cho-
sen clients then train θt by performing stochastic gradient descent (SGD)
locally for E epochs. Lastly, the clients upload the resulting model to the
server where they are aggregated using a weighted average given by:

θt+1 = ∑
k∈K

nk

n
θ

k
t+1 (1)

where n is the sum of all clients’ local data nk. It is empirically shown
in the work by H.Brendan McMahan [1] that the tuning of the number of
local updates is of major importance for FedAvg to converge. It is clear
that more local updates cause the model to be fitter for the local opti-
mization problem and move further away from the initial model, possibly
causing divergence.

1.2 Federated Proximal

Federated Proximal (FedProx) [4] was developed with the purpose of re-
stricting the amount of divergence of the local model with regard to the

global model, removing the need for heuristically limiting the number of
local updates.

FedProx is similar to FedAvg with the difference being that each
client local optimizer minimizes the objective given by:

minhk where hk = Fk +
µ

2
||θt −θ

k
t+1||

2
(2)

where µ

2 ||θ −θ t ||2 corresponds to the proximal term, which reduces
the effect of local updates by making the local model θ k

t+1 closer to the
global model θt . A cautious reader will note that if µ = 0, then this algo-
rithm is the same as the FedAvg algorithm.

2 Proposed Algorithms

The next sections contain the new Federated Learning algorithms pro-
posed and implemented in this work, namely Federated Congruent Di-
rectional Learning (FedCong) and Federated Momentum Learning (Fed-
Mom).

2.1 Federated Congruent Directional Learning

In this section, the FedCong algorithm will be presented. This algorithm
tries to mitigate a problem in FedAvg. As it was previously explained,
in FedAvg, the bigger the number of updates, the more fitted the model
is to the local optimization problem, potentially causing divergence. This
divergence can lead to a decay in the model’s convergence speed.

The FedCong algorithm was developed taking these facts into con-
sideration. It is similar to the other methods with the main difference
being that at the server, for each local model θ k

t+1 received, each weight
wk

t+1 update for the local problem is analysed. On the one hand, in case
wk

t+1 < wt , then it can be concluded that wk
t+1 had a negative update. On

the other hand, in case wk
t+1 > wt , then it can be concluded that wk

t+1 had
a positive update.

After this process in completed, for each weight this algorithm calcu-
lates the number of positive and negative updates of all the local models.
Afterwards, one of three possible situations will occur:

if P≥ K ∗α, then average the positive clients
if N ≥ K ∗α, then average the negative clients
otherwise, then average all the clients

(3)

where K is the number of selected clients, P and N are the number
of positive and negative updates for a specific weight, respectively, and
α(0,1) is a control parameter which specifies the minimum number of
positive or negative updates that are necessary to average a weight using
only the positive or negative updates.

2.2 Federated Momentum Learning

The FedMom algorithm was inspired by the Momentum optimizer [3,
5], having the objective of maximizing the training speed of the FedAvg
algorithm. Momentum is known to help the gradient vector pointing to
the right direction, damping oscillations and taking more straightforward
paths to the local minimum.

The following equations (4, 5, 6) show how the momentum update
can be reformulated into a Federated Learning setting. Firstly, FedMom

*/

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

starts by initializing a global model, θt . Afterwards, similarly to FedAvg,
the server selects K clients and uploads the current global model, θt . Sub-
sequently, the clients selected take one or multiple SGD steps locally as
follows:

θ
k
t+1 = θt −ηak where ak = (gk

e +gk
e−1 + ...+gk

0) (4)

where θ k
t is the local model of the k− th client, η is the learning rate,

t represents the global model’s timestamp, e represents the local model’s
timestamp, gk

e are the error gradients of θ k
e , and ak is the sum of all the

gradient updates of the k− th client’s local model.
Afterwards, the clients upload the resulting model θ k

t+1 to the server.
In the server, for every θ k

t+1 the server calculates the local update. Then,
it calculates the global update of the model using each local update as
follows:

−ηak = θ
k
t+1−θt

α =
K

∑
k=1

nk

n
(−ηak)

(5)

where α is the global model update, n represents the total number of
data points and nk represents the number of data points of the k−th client.

After this process is completed, the server stores the momentum vari-
able and updates the global model as follows:

vt+1 = δvt +α

θt+1 = θt + vt+1
(6)

where δ is the momentum term. As it can be observed, the momen-
tum update (vt+1) is calculated by summing a fraction of the previous
update and the global model’s update. Afterwards, the global model is
updated by summing the previous model with the momentum update.

3 Experimentation

In this section, the experimental results of the Federated Learning opti-
mizers will be presented. The algorithms tested were: FedAvg, FedProx,
FedCong and FedMom.

In the scope of this work, the baseline model considered is the Fe-
dAvg since it is the most widely used algorithm for Federated Learning.
In addition, FedProx is also evaluated. The primary objective of this work
is that FedCong and FedMom outperform FedAvg by increasing the con-
vergence speed of the models while maintaining the Mean Absolute Error
(MAE). The best algorithm is the one whose CR of stabilization is the
lowest without increasing the MAE.

The experimentation was done using the Turbofan Dataset. The Tur-
bofan dataset is composed of four sub-datasets (FD001, FD002, FD003
and FD004). Each dataset has a time series readings of 26 features, such
as Operational Settings, unit number, time indicator and 21 sensors’ val-
ues regarding the turbofan engine components. At the start of each series,
the system operates in a healthy condition until some point in time where
it enters a failure state and can no longer function. This degradation is
captured by the time indicator feature.

In addition, after some literature review, it was concluded that only 14
out of the 21 sensors presented valuable information to be used as input
features.

For each dataset, J clients were created so that each client has exactly
two time series. As such, each client only has a small portion of the data.
In the following experimentation, for each CR, K clients were randomly
selected from the J clients. The value of K for these experiments was set
to 20.

Each client of the FL setting is represented by a Feed Forward Neural
Network which has the objective of predicting the system’s health per-
centage. This neural network takes as input the preprocessed features’
values. The network architecture is as follows: three hidden layers with
20, 30 and 20 neurons, respectively, with tanh activation functions; the
output layer is a single neuron with a sigmoid activation function, which
represents the predicted system’s health percentage. The local optimizer
used was SGD and the error function used was the Mean Square Error
(MSE).

In Figure 1, the results of the proposed methods are presented for
the four different datasets (FD001, FD002, FD003 and FD004). The step

size η is similar between all the algorithms. The α and δ from FedCong
and FedMom, respectively, were tuned in order to obtain the best perfor-
mance. It can be observed that the two new proposed algorithms converge
faster than the others while maintaining the same MAE.

(FD001) (FD002)

(FD003) (FD004)
Figure 1: Performance comparison between FedAvg, FedProx, FedCong
and FedMom

4 Conclusion

The main contribution of this work are the proposal and development of
two new Federated Learning algorithms, namely FedCong and FedMom,
and comparison with state of the art. These methods have the objective of
improving the convergence speed of the Federated Learning models.

Although FedCong and FedMom greatly increased the convergence
speed of the models, some limitations should be considered. Firstly, in
FedCong, it is of most importance to tune the control term, α , with respect
to the data distribution. If the α value is low and the current CR has a bad
error representation, the global model will have difficulties to converge.

As for FedMom, the momentum parameter δ has to be tuned in or-
der for the model to converge. During a model’s update that has a poor
representation of the global error, a large momentum term can cause the
model to diverge even further and have constant fluctuations. This can
cause difficulties in the convergence of the model.

For future work it is suggested to improve the FedCong algorithm
by taking into consideration more than just the direction of the gradient
descend step. For example, taking into consideration also the size of the
step may help reducing the fluctuation of the global model.

In addition, it is suggested to compare the FedMom algorithm to the
work proposed by Huo et al. [2] where the authors use the current model’s
update to estimate the new weight value, instead of using an exponentially
weighted average.

References

[1] Daniel Ramage Seth Hampson Blaise Aguera y Arcass
H.Brendan McMahan, Eider Moore. Communication-efficient
learning of deep networks from decentralized data. In In AAAI Fall
Symposium.

[2] Zhouyuan Huo, Qian Yang, Bin Gu, and Lawrence Carin. Heng
Huang. Faster on-device training using new federated momentum
algorithm, 2020.

[3] Ning Qian. On the momentum term in gradient descent learning al-
gorithms. Neural Networks.

[4] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet
Talwalkar, and Virginia Smith. On the convergence of federated op-
timization in heterogeneous networks.

[5] Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence anal-
ysis of stochastic momentum methods for convex and non-convex
optimization. arXiv: Optimization and Control.

