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Abstract

A comparison between strategies aiming at optimal lag selection for co-
variates in INGARCH models, in the context of the analysis of the associ-
ation between air quality and daily number of respiratory hospital admis-
sions in Portugal is presented. To this end, a block-forward (BF) approach
is developed for automatic selection of covariates. Then, two strategies
are used for optimal lag selection: (i) fixed lag (FL) approach, with opti-
mal lag being selected as the one which maximises the cross-correlation
between the covariate and the daily admissions; and (ii) changeable lag
(CL) approach, with optimal lag being selected as that minimising the
AIC criterion among all candidate lags. Results show that CL models
have more significant covariates and lower AIC values than FL models.
The coefficients of covariates simultaneously in FL and CL models are
similar, despite having different optimal lags. Hence, the lag selection
strategy has an impact on model fitting, which cannot be neglected.

1 Introduction

This study considers the INteger Generalised AutoRegressive Conditional
Heteroskedastic (INGARCH) processes to model the association between
hospital admissions and air quality. These have an ARMA-like structure,
though the data generating mechanism is analogous to that of a GARCH
model in the sense that the conditional mean recursively depends on the
past conditional means and on the past observations [2, 3]. The IN-
GARCH formulation incorporates link/transformation functions [8], to
deal with negative serial correlation [4] and, time-varying covariates [5].
Model construction with covariates demands optimal criteria for covari-
ate selection. The importance of such criteria is evident, as model per-
formance can be improved by ignoring irrelevant covariates and, by con-
sidering the relevant covariates at optimal lags. These criteria should also
address collinearity, as a strong association among covariates may ob-
scure their relationship with the response and may lead to computational
instability in model estimation. This paper introduces a novel method
for optimal selection of time-varying covariates - the block-forward (BF).
Briefly, covariates expected to induce the same effect on the response are
included in one block. For each block, the significant covariate leading
to the lowest Akaike Information Criteria (AIC) model is included in the
model, as long as the covariates already in the model remain significant.
In time series context, the association between a response and a predictor
are usually lagged. As an example, it is well-known that the maximal as-
sociation between air pollution and hospital admissions may be delayed
up to 7 days [7]. Traditionally, the optimal response/predictor lag is eval-
uated from the absolute cross-correlation function (CCF), previously to
model construction. However, this procedure does not consider the possi-
ble associations among covariates. Thus, optimal lag choice in the process
of covariate selection (and not a priori) is a promising approach, as differ-
ent lagged versions of the same predictor can be thought of as a block of
collinear covariates. Thus, we aim at the comparison of two strategies for
lag selection, one based on the traditional CCF criterion (fixed lag, FL)
and another considering the optimal AIC criterion among several candi-
date lags (changeable lag, CL), using the BF covariate selection method.

2 Data & Methods

2.1 Data

This study included the analysis of time series of air quality (PM2.5,
PM10, NOx, NO2, CO, O3 and SO2), of temperature and of daily counts

of hospital admissions (due to respiratory causes) during the 2005-2017
period. Figure 1 shows an example of a hospital admission time series,
which clearly exhibits an annual seasonal pattern.
The spatial matching of air quality, temperature and hospital admissions
was based on a 20km influence circumference centered around each air
quality monitoring station. Hourly air quality data at 58 monitoring sta-
tions were downloaded from QualAr (www.qualar.apambiente.
pt). Hourly temperature data at 23 spatial locations were made available
by Instituto Português do Mar e da Atmosfera (https://www.ipma.
pt/). Daily series were obtained from the maximum daily values, when
at least 75% of hourly observations were available at a given day, other-
wise were obtained through 1-NN imputation. Temperature series were
matched to each spatial location based on their geographical proximity
(measured with euclidean distance). All hospital admissions episodes reg-
istered in Portugal (2005-2017) were provided by Administração Central
do Sistema de Saúde (http://www.acss.min-saude.pt). For
each spatial location, the daily number of hospital admissions due to res-
piratory causes was recorded as the count of episodes connected with res-
piratory system diseases’ (ICD-9:460–519 and ICD-10:J00-J99) from pa-
tients with address within the 20km influence circumference.

Figure 1: Hospital Admission time series at Valongo, Portugal.

2.2 INGARCH models

The INGARCH process (Yt) assumes that the conditional distribution of
Yt is Negative Binomial i.e.,

Yt |F t−1 ∼ NB(λt ,φ), (1)

where λt := E(Yt |Ft−1) and φ ∈ (0,∞) represents the dispersion param-
eter. Note that Var(Yt |Ft−1) = λt +λ 2

t /φ so, the limiting case φ → ∞ is
the Poisson distribution with parameter λt . In this formulation,

Ft−1 := σ( Ys, XXX s+1, s ≤ t−1 ) (2)

expresses the joint history of the process (up to time t−1) and covariates
(up to and including time t). Also, the conditional expectation λt satisfies
the recursion

g(λt) = β0 +
p

∑
k=1

βk g̃(Yt−k)+
q

∑
`=1

α` g(λt−`)+ηηη
T XXX t , (3)

where p and q are the INGARCH model orders, β0 > 0,βk ≥ 0, α` ≥ 0,
∀k,` and ∑

p
k=1 βk +∑

q
`=1 α` < 1. The latter condition ensures the station-

ary of the INGARCH process. Also, the link function g : R+ → R and
the transformation function g̃ : N0→ R were set as the natural logarithm
function, to easily accommodate covariates into the model [5]. Finally,
XXX t = (Xt,1, . . . ,Xt,r)

T is a time-varying r-dimensional covariate vector for
each time t and ηηη := (η1, ...,ηr)

T is the parameter vector of the covariates
coefficients. The estimation of INGARCH coefficients require a fixed or-
der p and q. Optimal (p,q) pairs were chosen by AIC minimisation, vary-
ing from 0 to 7 in order to accommodate several INGARCH-like struc-
tures and include terms related with the presence of weekly seasonality.



2.3 Block-Forward and optimal lag selection for covariates

The block-forward (BF) selection method allows the automatic selection
of significant covariates in XXX t . In the conventional forward method, e.g.
used in linear regression, covariates are sequentially added to the model
according to their statistical significance. In the BF method, the covari-
ates are organised in blocks, where each block includes the covariates that
are expected to induce a similar effect on Yt . Consequently, the covariates
in the same block are also expected to be correlated. For each block, the
significant covariate leading to the lowest AIC model enters the model, as
long as the other covariates remain significant (at 5% significance level).
The order of the blocks is presented in Fig. 2 and reflects the current
knowledge on the effect of temperature and air pollutants on hospital ad-
missions [1]. In the BF implementation, two approaches were considered
in the computation of the optimal lag between each covariate and Yt . The
fixed lag (FL) approach considers the covariate lag as that maximising the
absolute values of the sample cross-correlation between the covariate and
Yt . And, the changeable lag (CL) approach that selects the optimal lag in
which the BF conditions for a covariate to enter the INGARCH model are
optimised. In practice, the implementation of FL and CL approaches is
quite similar: while the FL approach considers the same number of can-
didates and covariates in one block, the CL approach considers that the
number of candidates in one block is equal to the number of covariates in
that block times the number of lags to be tested (in this case 8, from 0 to
7). Taking the example of block 2, FL approach tests up to 2 candidates
to enter the model while CL approach will test up to 16 candidates. Note
that, in both approaches, one candidate per block is selected at most.

Figure 2: Blocks of covariates in the block-forward approach.

3 Results

The constructed INGARCH models were compared with respect to the
number of selected covariates, the corresponding coefficients estimates
and the chosen lags. Figure 3 shows the number of selected covariates out
of the available for both approaches. Overall, CL models select more co-
variates than FL models. As an instance, temperature is selected in 54/58
CL models compared to 41/58 in FL models. Also, air quality covariates
are more often selected in CL than in FL models. The median number
of covariates included in the FL and CL models is, respectively, 2 and 3
covariates. Overall, both approaches show that air quality covariates are
significantly associated with daily hospital admissions, beyond the well-
established effect of temperature [6].

FL CL

Figure 3: Barplot of the number of selected (dark grey) over the number
of available (light grey) covariates for the 58 spatial locations analysed.

FL CL

Figure 4: Distribution of the scaled coefficients at the 58 spatial locations.
Boxplots are shown when there are at least 15 locations.

Lag Temp PM10 NO2 O3 CO
FL CL FL CL FL CL FL CL FL CL

0 0.0 27.8 10.0 8.0 68.8 5.9 10.0 19.0 0.0 0.0
1 0.0 5.6 10.0 12.0 0.0 11.8 10.0 19.0 0.0 0.0
2 0.0 5.6 20.0 24.0 0.0 17.6 0.0 9.5 0.0 20.0
3 0.0 14.8 0.0 20.0 0.0 17.6 0.0 23.8 0.0 20.0
4 4.9 13.0 20.0 16.0 0.0 5.9 0.0 9.5 0.0 30.0
5 12.2 13.0 30.0 8.0 0.0 0.0 0.0 4.8 0.0 10.0
6 4.9 11.1 10.0 0.0 12.5 5.9 0.0 9.5 50.0 10.0
7 78.0 9.3 0.0 12.0 18.8 35.3 80.0 4.8 50.0 10.0

Total (%) 100 100 100 100 100.0 100 100 100 100 100
Total (N) 41 54 10 25 16 17 10 21 4 10

Table 1: Distribution of the chosen lags according to FL and CL approach.

Figure 4 displays the distribution of the estimated scaled coefficients (i.e.
coefficient divided by its standard error) for each covariate. Temperature
and O3 are negatively associated with respiratory hospital admissions,
whereas the remaining air pollutants are, in general, positively associ-
ated. The magnitude of the coefficients and, the overall direction of the
association are similar for both approaches. Hence, there is no major im-
pact on the quantification of the covariate effect between approaches.
Table 1 shows the distribution of the chosen lags for some of the covari-
ates analysed (Temp, PM10, NO2, O3 and CO) according to each ap-
proach. There is some variability in the proportion of selected lags de-
pending on the approach. For instance, while lag 7 is the preferred for
Temp (78.0%) in the FL approach, lag 0 (27.8%) and lag 3 (14.8%) are
the most frequently chosen in the CL approach. It is worthy to mention
that CL models have, on average, lower AIC (< 20 units). Recall that the
AIC criterion is a trade-off between information and number of covariates
in a model (where increased number of covariates is penalised). Thus, the
information of the covariates added pay-off the increase in complexity.

4 Conclusion

Despite the CL approach choosing more variables and different lags, the
coefficients estimates remain similar for the covariates between approaches.
However, the AIC of CL models is lower than that of FL models, indicat-
ing that the amount of information introduced by the additional variables
in CL models pays-off the increased number of variables. Thus, tuning
the lag during covariate selection is more advantageous as it increases the
model performance. The trade-off is that the CL approach is computa-
tionally more demanding as both the covariates and their lagged versions
are tested in the BF algorithm, which is an important aspect to consider
when performing such analysis. Either way, an adequate modelling strat-
egy is essential to assist in hospital planning and resources management
and, ultimately, to contribute to better health/environmental policies.
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