
  

 

Abstract 
Cultural ecosystem services (CES) result from the interactions between humans 

and nature, contributing to people’s physical and mental well-being.  Most social 
media content analyses considered in the context of CES are based on the manual 

classification of photos or texts shared by social media users. Inevitably, the 

manual classification of big photographic data is too time consuming and costly, 
particularly when it comes to large study areas and audiences. In this work we 

studied automated image classification techniques using deep learning approaches 

to address CES. 

1 Introduction 

Nowadays, computer science and related fields have been highly 
invested in the use and combination of methods that incorporate social 
media analytics [1]. Social media platforms represent a very significant 
fraction of all the available digital data, constituting an efficient method 
to collect big data that provide information on people’s interactions with 
each other and with their environment [2]. Fast improvements in 
computational power and data storage capacity during the last years have 
motivated the emergent fields of Digital Conservation, iEcology and 
conservation culturomics [3]. These disciplinary fields refer to the use of 
digital (big) data and technology to understand human-nature interactions 
and to provide evidence in favour of nature conservation and of the 
sustainable management of ecosystems [4]. Among these human-nature 
interactions are cultural ecosystem services (CES), which constitute the 
non-material benefits that people can experience from nature, such as 
recreation and ecotourism, as well as those pertaining to spiritual, 
religious, aesthetic or heritage values, among others [5].  

An approach that combines different data from social media with 
advanced analytics, besides spatial analysis, remains underexplored in the 
context of CES assessment. Thus, the investment in methods that can 
identify features of ecosystems and nature through the content analysis of 
shared photos (or text), can constitute an asset to support the evaluation 
of CES, particularly, related to aesthetics and recreation or ecotourism 
[6]. Lee et al., for example, proposed a method for analysing large 
amounts of social media photographs, as well as to derive indicators of 
socio-cultural usage of landscapes, through cluster detection with 
Convolutional Neural Networks (CNNs) [7]. This project aims to develop 
an automated classification of social media photographs that can be useful 
for CES evaluation and for providing innovative solutions to the scientific 
community. Specifically, this study aims to answer the following 
questions: (1) can deep learning algorithms be developed to support an 
automated classification of social media photographs in the context of 
CES? and (2) how can those algorithms and models be improved so as to 
promote statistically reliable image classifications? To achieve this, deep 
learning algorithms are developed and tested, more specifically CNNs 
and transfer learning strategies are applied to the classification of digital 
photographs of the “Peneda-Gerês” protected area (Northern Portugal) 
obtained from the social media platforms Flickr and Wikiloc.  

2 Methods 

2.1 Image classification methodology 

We performed a classification of the content of photographs from the 
protected area “Peneda-Gerês” (Northern Portugal), that were withdrawn 
from the Flickr and Wikiloc social media platforms, specifying a time 
window of 2003-2017 (1778 images in total). This classification was 
based on “Nature” and “Human” labels (Figure 1). To achieve that, two 
different CNNs architectures were implemented, the VGG16 and the 
ResNet152, in order to verify the most appropriate and suitable for our 
study. 

The proposed image classification methods were evaluated over the 
dataset using a 5-fold-cross validation method, following the literature 
and taking into account the computational resources and the running time. 

The considered performance metrics (accuracy, sensitivity, specificity, 
and F1-score) were computed as the mean of the performance metrics 
obtained over the 5 different folds. During training, in each of the 5 folds, 
10% of the training data was retained to perform model validation, in 
order to determine the training parameters that guaranteed the highest 
accuracy over the validation set. 

Since we are coping with a small dataset, in order to improve the 
generalization of the model and avoid the overfitting, transfer learning 
and data augmentation schemes were considered. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1: Examples of images belonging to the Nature and Human labels. 

a) Nature, b) Human. 

2.2 CNN architectures and transfer learning 

The VGG16 and ResNet152 were the chosen CNNs architectures. For 
both CNN architectures, three different sets of weights were considered: 
(1) weights obtained by training over the dataset “Places365”, (2) weights 
obtained by training over the database “ImageNet” and (3) weights 
obtained by training the networks from scratch. 
The Places365 dataset is the latest subset of the database Places, 
comprising around 1.8 million scene photographs of different places, 
labelled with 365 scene semantic categories, including photographs with 
similar elements to the ones under study. The ImageNet database 
constitutes a large-scale hierarchical image database, that has several 
applications in the broadest areas, comprising more than 14 million 
cleanly annotated images spread over around 21,000 categories. Both 
databases were selected due to their freely available online resources 
(weights and models).  

Regarding the details of the transfer learning strategy implemented, 
all the convolutional layers were kept frozen when training over our 
dataset, while the remaining 3 (for VGG16) and 1 (for ResNet152) fully 
connected layers were trained with our dataset. Moreover, for both 
architectures, an additional dense layer with 128 units and a rectifier linear 
unit activation function was also included (to allow better fit of the 
model/network to the classification task) before the output layer, which 
was modified in order to have 2 units.  

Regarding the training details, both networks were trained using the 
Adam optimizer. For VGG16, the best performance was verified when 
considering a learning rate of 0.000001 while, for ResNet152, it was 
0.0001 the most accurate learning rate. Also, it was observed that, for 
VGG16, the model accuracy and loss had fully converged after 50 epochs, 
having been decided, because of that, to use only 50 epochs to build the 
VGG16 model, as well as the ResNet152 model, due to computing 
resource management. 

2.3 Data augmentation 

Regarding data augmentation, 5 transformations (including horizontal 
flip, width shift, height shift and zoom) were implemented individually 
for each of the images in the training set. The images in the validation set 
were not included in this process, in order to avoid biased results. The 
total number of transformations applied to each photograph (5 per image) 
was selected taking into account the overall running time of the algorithm, 
as well as the available computational memory.  
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3 Results 

3.1 Nature vs. Human classification 

When comparing the two transfer learning scenarios and the weights 
obtained by training only over our dataset (Figure 1), it was observed that, 
ImageNet had, overall, a higher accuracy for the two architectures under 
study (86.11 vs 87.18), followed by Places365 and weights trained only 
with our dataset, with the exception of Places365 in VGG16, that resulted 
in an equally high accuracy (87.01). Also, it was verified that, for 
Places365, VGG16 had a better performance when compared to 
ResNet152 (87.01 vs 86.00), while for the remaining scenarios, 
ResNet152 model was more accurate than the one for VGG16. 

 

Figure 1: Accuracy of the VGG16 and ResNet152 model performance for 

the two transfer learning scenarios and the weights from scratch. 

Considering sensitivity (Figure 2), it was verified that ImageNet had, 
overall, better results for the two architectures under study (86.71 and 
86.78), followed by Places365 and weights trained only with our dataset, 
with the exception of Places365 in VGG16, that resulted in a higher 
sensitivity value (88.48). Likewise, it was observed that ResNet152 had 
slightly finer sensitivity results when compared to VGG16, except for 
Places365, where VGG16 showed the best result (88.48 vs 83.40). 

 

Figure 2: Sensitivity of the VGG16 and ResNet152 model performance 

for the two transfer learning scenarios and the weights from scratch. 

For specificity (Figure 3), it was observed that Places365 had finer 
specificity results for the two architectures under study (85.54 and 88.46), 
followed by ImageNet and weights trained only with our dataset. 
Similarly, it was verified that ResNet152 had better specificity results 
when compared to VGG16, for all the scenarios under study. 

 

Figure 3: Specificity of the VGG16 and ResNet152 model performance 

for the two transfer learning scenarios and the weights from scratch. 

Considering the F1-score (Figure 4), it was verified that ImageNet 
had slightly better F1-score results for the two architectures under study 
(86.53 and 87.44), followed by Places365 and weights trained only with 
our dataset. Also, it was observed that ResNet152 had finer F1-score 

results when compared to VGG16, except for Places365, where VGG16 
showed the best result (87.53 vs 85.89). 

 

Figure 4: F1-score of the VGG16 and ResNet152 model performance for 

the two transfer learning scenarios and the weights from scratch. 

4 Discussion and Conclusions 

When comparing the two considered transfer learning scenarios and 
the weights obtained by training only over our dataset, it was expected 
that the model implemented with the Places365 weights would have a 
finer performance than the other two (with ImageNet weights and weights 
trained only with our dataset), since all the photographs contained in this 
dataset are exclusively related with landscapes and places in general, 
constituting the database that most resembles our dataset. Perhaps 
surprisingly, this was not the case for both VGG16 and ResNet152, as 
ImageNet was undoubtedly the database where the two transfer learning 
scenarios achieved better results. A possible explanation for this behavior 
can reside in the observation that deep learning models achieve more 
accurate results when trained in the presence of large datasets. In fact, 
ImageNet, by containing a larger number of photographs (more than 14 
million) than Places365 (around 1.8 million), has led to a better 
performance of the model. Also, ImageNet contains a greater diversity of 
images that seems to contribute to a better generalization of the model. 

The results showed that deep learning methods can offer significant 
contributions to assist in CES evaluation. Future work will focus on the 
improvement of the robustness of these models against scarcely labeled 
data via the use of semi-supervised approaches by leveraging autoencoder 
architectures and generative adversarial networks. 
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