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Abstract

The Corpus Callosum is an important brain structure, whose function is to
interconnect the brain’s hemispheres. The segmentation of this structure
is very challenging, but nowadays several automatic strategies to achieve
this goal already exist. In this paper it will be presented a deep learning
algorithm for the Corpus Callosum segmentation, using a U-Net model.
Also, in this work, a transfer learning approach was performed, where the
network was trained to execute the cerebellum segmentation, and the net
weights were stored to apply them to the Corpus Callosum segmentation
task.

The obtained results were very satisfying, achieving an average dice
score of 62.51% and 81.62% for the control and the autistic patients
group, respectively, making this methodology very interesting for Corpus
Callosum segmentation in diagnosis tasks, for example.

1 Introduction

The Corpus Callosum (CC) is a brain structure composed of white matter,
which connects the left and right brain hemispheres, being responsible
for the communication between them. This structure can reach approxi-
mately 10 cm of length and 1 cm of width, containing about 200 million
axonal projections [1]. Structural features of CC, like size and shape, are
correlated to neurological diseases, such as epilepsy, autism, schizophre-
nia, and dyslexia, for example. Thus, automatic and precise segmentation
can be advantageous for the diagnosis of these diseases, based on quanti-
tative CC features [2].

When compared to manual segmentation, an automatic approach is
easier to perform, saving time, and the segmentation result is independent
of errors inherent to human performance. Manual segmentation of the
CC is difficult by the fact that the fornix and the nervous tissue’s intensity
around the CC on MRI (Magnetic Resonance Imaging) images is very
similar to the CC’s intensity [2].

The U-Net is a convolutional neural network used recently for biomed-
ical images segmentation purposes. This specific network is composed
by a contracting (down sampling) and an expanding (up sampling) path,
symmetrically placed. The first one has the architecture of a common
convolutional network, composed by repeated perform of two 3x3 convo-
lutions, each pursued by a ReLU (Rectified Linear Unit) and a 2x2 max
pooling operation, responsible for the input images down sampling. The
function pooling has 2 as stride. In the down sampling path, the quan-
tity of feature channels is doubled at each step. On the other hand, the
expansive path is responsible for the up sampling of the feature map at
each stage followed by 2x2 convolution that reduces the feature channels
to half. The convolution output is concatenated with the correspondent
feature map on the same level in the descent path, reincluding the local-
ization information, and two 3x3 convolutions are processed, each one
followed by a ReLU. In the final layer a 1x1 convolution is applied to
map the resulting feature vector, formed by 64 components [3].

The U-Net is a good option for segmentation goals because it is ca-
pable of combining localized and contextual information, given by the
down sampling and the up sampling paths, respectively, making this net-
work more precise when compared with others, and doesn’t need a large
amount of data for the training task, making use of data augmentation.
Also, the use of a weighted loss function allows an accurate diagnosis
separating efficiently two objects of interest, since in the training task the

network gives more weight to the pixels between the objects as the dis-
tance between them decreases [3].

In this work, transfer learning was used to facilitate the learning pro-
cess for the CC’s segmentation, obtaining a more accurate and faster seg-
mentation. Transfer learning approaches allow the use of less labelled
training data. Succinctly, a network is previously trained for a different
segmentation task, in this paper the U-Net was trained with cerebellum
images, well segmented by the VolBrain platform [4], and then the knowl-
edge (features, weights) acquired are used on the contracting path, only
being necessary the training of the expanding path for the final goal, the
CC’s segmentation in this specific case. Some of the obtained images
using this approach can be seen in Figure 1.

2 Methodology

The U-Net described in the introduction was trained using images from
ABIDE dataset [5]. More specifically 32 images from the California In-
stitute of Technology were used for training, of which 19 were of autistic
patients and the rest were from control cases and 6 were used for valida-
tion of the model. The datasets partitions for training and validation were
chosen randomly. For testing the trained network, 5 images of normal
and 5 of autistic patients were randomly used, from the Carnegie Mellon
University image repository.

The images were all passed through the VolBrain MRI image pipeline
[4] to obtain MRI scans all on the same position and to obtain cerebellum
segmentations. To achieve CC segmentation, that will be used for model
optimization, the software ITK-SNAP [6] was used to segment each im-
age manually, since VolBrain does not segment this structure. Each slice
of the processed volumes was padded with zeros to reach a dimension of
256x256 pixels in width and length. This last procedure was necessary to
conform to the dimension requirements of the input image to the U-Net.

The training of the network was carried out in two stages. In the first
one the model was fed MRI images slices as an input and cerebellum
segmentations as an output, as a way to train the encoder of the model.
After completion of the first stage, the weights of the encoder’s layers
were locked to speed up training of the following part. On the second
stage, the model was trained using the same MRI images, as an input, and
CC segmentations as the desired output. Cerebellum segmentations were
chosen for this transfer learning method, because they represent a task
that is similar to the CC segmentation (same domain).

Each stage was trained using an Adam optimizer with a learning rate
of 0.0001 and a binary cross-entropy function. The training was consti-
tuted by 10 epochs, which were carried out in each stage of training. The
data fed to the network was augmented through random rotation opera-
tions (in a range of 10 degrees), random horizontal and vertical flips and
random shifts (in a range 0.1*image size) in the original image.

3 Results and Discussion

The training of this type of networks usually is performed using GPU.
However, it was ran in CPU, due to hardware limitations, taking more
time to execute the training task. For the cerebellum segmentation, the 10
epochs were performed in 21 hours and 53 minutes. For the CC segmen-
tation, the 10 epochs were performed in 22 hours and 35 minutes. The
accuracy per epoch obtained in training of both phases can be observed



(a) (b) (c) (d)
Figure 1: CC segmentation in the anatomical planes: (a) axial; (b) coronal; (c) sagittal; (d) 3D representation;

(a) (b)
Figure 2: Voxelwise accuracy evolution in the training task through epochs: (a) cerebellum segmentation; (b) CC segmentation;

on Figure 2. After training, the automatic segmentation of each volume
could be completed within 45 seconds average.

Anyone seeking to reproduce the obtained results in this article should
try to use a GPU for training, since the process should become much more
time efficient, making it possible to run more epochs for a better under-
standing of the model. However, from the training history it is possible to
understand that both steps of training stabilize the segmentation accuracy
after 4 epochs for the training and testing datasets. This is not verified
on the testing dataset of the CC segmentation, where the accuracy fluctu-
ates a bit, approximately 0.0002%, so it was considered irrelevant. Such a
phenomenon may be explained by the random errors performed in manual
segmentation, that make it harder for the model to properly adapt, which
can also explain why the second stage of segmentation took longer than
the first one. With the use of transfer learning to segment the CC it is
possible to achieve higher accuracy values in less epochs, as can be seen
in Figure 2 (b), due to the fact that most of the training was already done
with the cerebellum segmentation dataset.

To evaluate the network performance, 5 MRIs of normal patients and
5 MRIs of autistic patients were automatically segmented, being one ex-
ample of this procedure represented in Figure 1, and compared against
the manual ones. To analyze the match of both segmentation a dice score
evaluation metric was used, due to its relevance in segmentation tasks.
The mean results for this metric was 62.51% for the control group and
81.62% for the autistic patients group.

The achieved results for dice score were satisfactory for both groups,
however the algorithm was more successful in the segmentation of brains
of autistic patients. The differences may be explained by different fac-
tors. The first one is related to the fact that the CC segmentation were
done manually by an untrained researcher, and as a result they are bound
to have many small random mistakes in them. In fact, in some sepa-
rate cases, the automatic segmentation seems better than the manual one,
meaning that the poor dice score achieved is not a good measurement of
the quality of segmentation. The second one is related to poor MRI im-
age quality after VolBrain treatment. Specifically one of the images used
in the control group was distorted, which caused the algorithm to falsely
label a region as CC, causing the drop in the mean dice score. Perhaps
more vast image augmentation procedures could be applied, to ensure that
the process remains robust, even when faced with this type of problems.
On other note, the training accuracy was significantly higher than in these
test volumes because the metric used was different due to the limitations
of the algorithm used.

4 Conclusion and Final Remarks

This algorithm was able to perform a good CC segmentation, obtaining
satisfactory results in the dice score evaluation metric. However, some

improvements can be done in the training task, like the execution of a
manual segmentation of CC by a specialist of the area, and the application
of more image augmentation procedures to increase the robustness of the
algorithm, leading to better dice score results.

The use of transfer learning had various advantages along this work.
First, this methodology was able to perform a good CC segmentation even
with the presence of some errors in the ground truth, since it was executed
by an untrained individual. Second, by using this methodology it is possi-
ble to achieve accurate segmentations of the desired anatomical structure
within few epochs. If a bigger dataset is used in the initial phase, it should
be possible to achieve even better results, easing the training for the end
user, allowing him to obtain a segmentation tool with a smaller dataset
and in shorter time.

The obtention of CC segmentation by an automatic system, like the
one that was described in this paper, can be used to support diagnosis
tasks, like the diagnostic of Autism Spectrum Disorder. Also, this algo-
rithm can be used to obtain an automatic segmentation of diverse struc-
tures, giving the possibility to obtain batches of data, which can be used to
study relevant properties (texture, edges, volume, etc.) of those structures,
allowing the progress of several science fields.
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