

*jose.filipe@ieee.org

Motivation

- Image and video data represent the majority of all internet traffic
- New applications and emerging services (e.g., 4K/8K video, cloud gaming and smart surveillance systems) are push requirements for more efficient video coding standards
- The next-gen coding standard, Versatile Video Coding (VVC) was recently finished, achieving higher coding efficiency gain at cost of increased computational complexity
- VVC is 7 to 9 times more complex than High Efficiency Video Coding (HEVC)
- Fast computational methods are of utmost importance to ease adoption of the this standard and to overcome implementation constraints

Proposed Method

Results

- Three Extremely Randomised Trees models
 - Quaternary Tree Partition
 - Binary Tree Partition
 - Ternary Tree Partition
- Predicts maximum depths of each partition type at CTU level
- Prediction from models used as **early termination**

Features

Table 1: List of Features			
ID	Features		
1	Latitude of the centre point of the CTU		
2	Secant of the latitude of the centre point of the CTU		
3	Spatial Information		
4	Std. Dev. of Sobel filtered CTU along x		
5	Std. Dev. of Sobel filtered CTU along y		
6	Std. Dev. of Sobel filtered bottom left fourth of CTU, along y		

- Set of 6 features, selected from 56 features using Recursive Feature Elimination
 - Features 1 and 2 were specifically designed with ERP projection in mind
 - Features 3 to 6 are known to be informative regarding the partition scheme

- Experimental Setup,
 - -10 test sequences with resolution of 4432×2216 pixels
 - VTM 8.0
 - All intra configuration, next profile, set of 4 QPs (22, 27, 32, 37)
 - Coding efficiency evaluated using Bjontegaard Delta Rate (BD-Rate) - Coding complexity evaluated using:

$$\Delta T = \frac{1}{4} \cdot \sum_{q} \frac{T_{pm}^q - T_{ref}^q}{T_{ref}^q}, \ q \in \{22, 27, 32, 37\}$$

 T_{ref}^q - Time spent to encode the sequence using regular VVC with QP = q T_{pm}^{q} - Time spent to encode the sequence using the proposed method with QP = q

 Table 3: Proposed method vs. reference VVC

Sequence	BD-Rate (%)	ΔT (%)
Harbor	0.79	-26.00
KiteFlite	0.42	-28.46
Balboa	0.36	-31.43
BranCastle	0.24	-35.71
Broadway	0.36	-31.23
Landing2	0.30	-35.88
SkateBoardInLot	0.96	-36.45
ChailiftRide	1.06	-35.92
Trolley	0.42	-31.27
Gaslamp	0.72	-25.69

(from literature)

Models

• Models predict maximum partition depth for each partition type at CTU level

• Training conditions

- 10 ERP sequences, recommended by VVC CTCs
- 10-Fold Cross-Validation (1 sequence for testing and 9 training)
- All intra configuration, next profile, QP = 22

- The Proposed method significantly reduces the complexity, when compared to the VVC reference implementation
- A negligible loss of coding efficiency (below 1%) for 9 out of the 10 sequences
- Average complexity reduction: 31.35%
- Average increase in bitrate for a given visual quality: 0.42%
- Percentage of complexity reduction that a given method can achieve per each 1% of BD-Rate loss: 74.30
- Outperforms other state of the art methods

BranCastle Case Study

Complexity Reduction

Conclusions

• A novel algorithm that leverages 3 ERT models to predict maximum partition depth of each type (QT, BT, TT) in Intra frames of omnidirection sequences in ERP format

• Prediction is used to early terminate RDO process when the maximum depth is reached

• Proposed method achieves complexity reduction of about 31%, with negligible coding efficiency loss 0, 42%, outperforming the state of the art low complexity solutions

Supported by Programa Operacional Regional do Centro, project ARoundVision CENTRO-01-0145-FEDER-030652 and FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/EEA/50008/2020, Portugal.

