Comparison and Evaluation of Information-based Measures in Images

Jorge Miguel Silva^{1,2}, Diogo Pratas^{1,2,3} and Sérgio Matos^{1,2}

¹IEETA, University of Aveiro, Aveiro, Portugal; ²DETI, University of Aveiro, Aveiro, Portugal; ³ Department of Virology, University of Helsinki, Helsinki, Finland

Purpose of the study

Lossless data compressors and small Turing machines can **approximate the quantity of information** present in a digital object.

In this paper, we **describe** and **compare** these approaches of measuring unsupervised probabilistic and algorithmic information on **images (2D)** with different characteristics.

We use the **Normalized Compression (NC)** employing the data compression **PAQ8** and compare it with the **Block Decomposition Method (BDM)** and show some **advantages** and **limitations** of both measures.

Results

To compare NC with BDM, we performed three tests that analyzed:

- Their robustness with increasing rates of random pixel changes in paintings;
- **Their** behavior on **different** types of **images**;
- Their minimal information bounds.

Figure 1 shows that when using the same type of normalization, **NC** is **more robust** than **NBDM** (NBDM1) to the **increase in the** rate of random pixel edition.

Figure 2. NC and NBDM₁ for different types of images.

In the last test, we selected one of the most complex images identified by the **NBDM** in the last subsection to test if the **BDM** could accommodate specific data alterations.

Figure 3 shows that after performing a super-sample image transformation, the BDM was computed for the original and the super-sampled image.

000011111111111111 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 **Binarization** 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0111 0110 1 1 1 1 1 1 1 1 0 0 0 0 $0\ 1\ 1\ 1$ 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0111 \searrow 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 \searrow BDM: 79 bits **BDM: 370981 bits** Compression: 270584 bits Compression: 335440 bits

Figure 3. Image transformation pipeline leading to BDM underestimation of the amount of information contained in the transformed object.

Figure 1. Impact of increasing pseudo-random substitution on informationbased measures: NC (approximated using the PAQ8 algorithm) and two BDM normalizations (NBDM₁ and NBDM₂).

In the **second test**, we applied the **NBDM**₁ and **NC** to **six** distinct datasets (9 images each) to understand the behavior of these measures for different types of images.

The six datasets were:

- Artistic images from (2 datasets);
- **Cellular automata** images; **Diabetic retinopathy** images; Chest computed radiography images; • **Photographic** images.

The original image was measured with **370981 bits**, whereas the super-sampled image had only 79 bits.

This **abrupt decrease** in the complexity value indicates that the **BDM underestimates** the **amount of information** contained **in** the object. This is because BDM analyses object information in blocks instead of looking at the whole object.

Conclusions

NC is more robust to the increment of pixel edition than

Figure 2 shows different behaviors between NC and NBDM₁ in images generated by Cellular automata.

The **BDM** can **ascertain** their **algorithmic nature** and thus attribute them with **minimal value**. This outcome shows the importance of the **BDM** in the **detection of simple output** programs embedded into data.

- NBDM.
- BDM can determine the algorithmic nature of images created with small programs with simple rules.
- BDM is not prepared to deal with the information associated with the model's choice, unlike NC. The NC relies on using a lossless data compressor, bounded by a maximum information channel capacity.
- There are advantages and limitations of both measures. Ranking these measures is not a fair task because they have different characteristics and nature.

