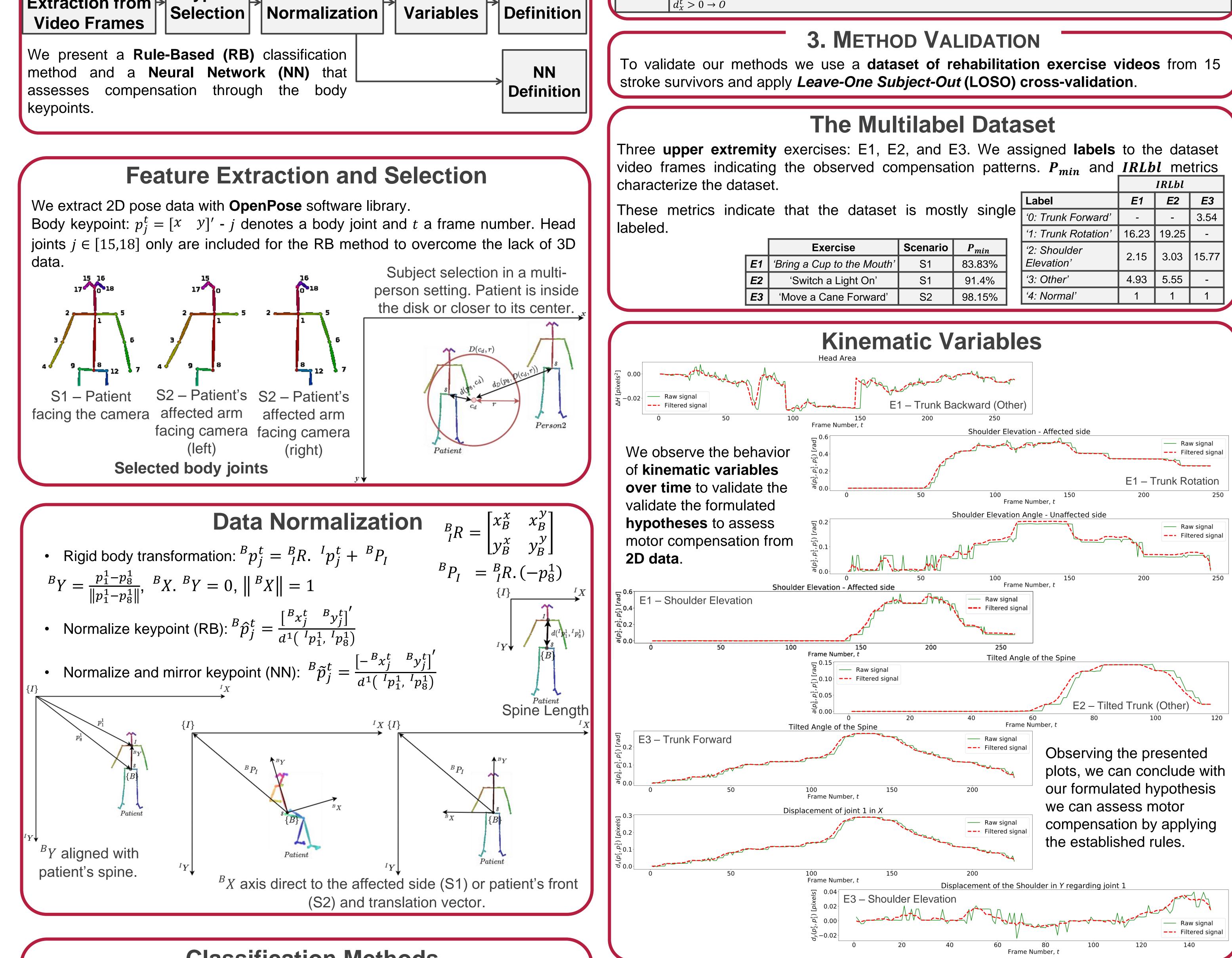


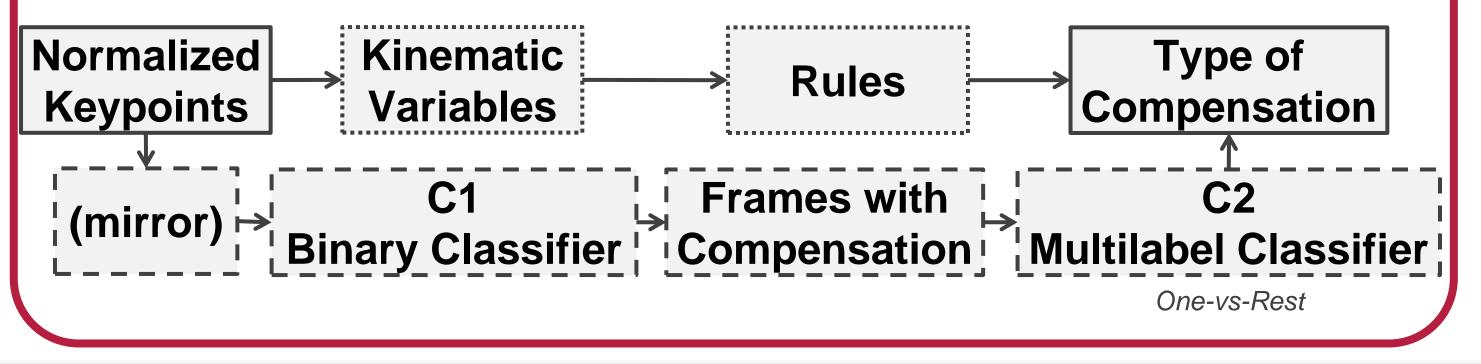
Assessment of Motor Compensation Patterns in Stroke Rehabilitation Exercises

Ana Rita Cóias ana.coias@tecnico.ulisboa.pt Alexandre Bernardino alex@isr.tecnico.ulisboa.pt


VisLab, Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

1. MOTIVATION

The increasing demand concerning **stroke rehabilitation** and **in-home exercise** promotion requires objective methods to **assess** patients' **quality of movement**, allowing progress tracking and promoting consensus among treatment regimens. In this work, we propose a method to detect diverse **compensation patterns (CP)** during exercise performance with **2D pose data** to automate rehabilitation programs monitorization in any device with a 2D camera, such as tablets, smartphones, or robotic assistants.


2. LEARNING TO ASSESS MOTOR COMPENSATION										
Keypoint Extraction from	Keypoint	Data	Kinematic	RB						

Kinematic Variables for the RB Method							
СР	Kinematic variables & Rules						
Trunk Forward	<u>S1</u> : Observed changes in patient's head area: <i>Hypothesis</i> : $\Delta H^t = \begin{cases} H^t - H^1, & \text{if } t > 1 \\ 0, & \text{otherwise} \end{cases}$ - Rule : If $\Delta H^t > threshold \to TF$						
(TF)	<u>S2</u> : Spine angular and linear displacements: $a^t(p_8^1, p_1^1, p_1^t) \wedge d_x^t(p_1^t, p_1^1)$ - Rule : If $a^t > threshold \wedge d_x^t > 0 \rightarrow TF$						
Trunk Rotation (TR)	<u>S1:</u> Simultaneous angular displacements of both shoulder: <i>Hypothesis</i> : $a^t(p_2^1, p_1^1, p_2^t) \land a^t(p_5^1, p_1^1, p_5^t)$ - Rule : <i>If</i> $a^t(p_2^1, p_1^1, p_2^t) > threshold_1 \land a^t(p_5^1, p_1^1, p_5^t) > threshold_2$ and threshold_1 \approx threshold_2 \rightarrow <i>TR</i> <u>S2:</u> Absolute changes in the chest length: <i>Hypothesis</i> : $ \Delta d^t(p_2^t, p_5^t) $ or shoulder displacement regarding joint 1 in <i>X</i> : <i>Hypothesis</i> : $d^t_x(p_{2/5}, p_1)$ - Rule : <i>If</i> $ \Delta d^t > threshold$ or $d^t_x > threshold \rightarrow TR$						
Shoulder Elevation (SE)	131.510000000000000000000000000000000000						
Othor	<u>S1</u> : Trunk Tilt – spine angular displacement: $a^t(p_8^1, p_1^1, p_1^1)$; Trunk Backward – observed changes in patient's head area: <i>Hypothesis</i> : $\Delta H^t = \begin{cases} H^t - H^1, & \text{if } t > 1 \\ 0, & \text{otherwise} \end{cases}$ - Rule : <i>If</i> $a^t > \text{threshold or } \Delta H^t > \text{threshold} \rightarrow 0$						
	<u>S2</u> : Trunk Tilt – absolute changes in patient's head area: <i>Hypothesis</i> : $ \Delta H^t = \begin{cases} H^t - H^1 , & \text{if } t > 1 \\ 0, & \text{otherwise} \end{cases}$; Trunk Backward – spine angular and liner displacements: $a^t(p_8^1, p_1^1, p_1^t) \land d_x^t(p_1^t, p_1^1) - \text{Rule: } f \Delta H^t > \text{threshold or } a^t > \text{threshold and} \\ d_x^t > 0 \rightarrow 0 \end{cases}$						

Classification Methods

- Rule-Based (RB): *if-then* rules applied to kinematic variables.
- Neural Network (NN): binary and multilabel classifiers with body keypoints as input.

NN method Classification Results								
Layers	One to Two 16, 64, and 96 hidden units		Precision	Recall	F1 – Score	Hamming Loss		
Learning rate	ate Adaptive		0.765 ± 0.14	$\boldsymbol{0.783\pm0.12}$	$\textbf{0.767} \pm \textbf{0.12}$	0.11 ± 0.06		
Activation Function	C1 - <i>'ReLu'</i> ; C2 – <i>'Tanh'</i>	E 2	0.555 <u>+</u> 0.17	0.666 ± 0.17	0.602 ± 0.17	0.187 ± 0.08		
Optimizer	'Adam' with mini-batch of size 5	E3	0.697 <u>+</u> 0.27	0.71 <u>+</u> 0.26	0.701 ± 0.26	0.126 ± 0.11		
The NN deals better with singles labeled frames. RB handles better with more multilabeld samples. Both methods could benefit from more data		NN	Precision	Recall	F1 – Score	Hamming Loss		
		E1	0.692 ± 0.23	0.678 ± 0.25	0.679 ± 0.24	0.187 ± 0.15		
		E 2	0.673 ± 0.21	$\textbf{0.675} \pm \textbf{0.19}$	0.668 ± 0.19	0.182 ± 0.11		
		E 3	0.785 ± 0.22	0.783 ± 0.21	0.783 ± 0.22	0.153 ± 0.14		
samples.								

Acknowledgements

This work was supported by FCT with the LARSyS - FCT Project UIDB/50009/2020 and project IntelligentCare – Intelligent Multimorbidity Management System (Reference LISBOA-01-0247-FEDER-045948), co-financed by the ERDF – European Regional Development Fund through the Lisbon Portugal Regional Operational Program – LISBOA 2020 and by the Portuguese Foundation for Science and Technology – FCT under CMU Portugal.

