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rThis work performs statistical analysis of "Big data", considering the recent approach of Symbolic Data Analysis (SDA). The practical situation under study concerns the prediction of pollution levels in Senegal from
atmospheric variables (meteorological indicators). The large number of records leads to the need of data aggregation. A temporal aggregation (by day) is made, where to each new unit (day) corresponds the interval of
recorded values (minimum and maximum) in a given day. The symbolic data studied in this work is therefore interval data. The objective was then to obtain symbolic regression models that allow explaining an objective
interval-valued variable, the pollution level, as a function of explanatory interval-valued variables - the atmospheric variables. However, a single regression model is often not sufficient to adequately model the phenomenon
\.under study. Thus, it was necessary to identify classes in the observed set and obtain a specific model appropriate for each class. To solve this problem, clusterwise regression for interval-valued data was developed.

1. Problem: Predicting the levels of pollution in Senegal

The data under study consists of records of observations of atmospheric variables (meteorological indicators) and levels of pollution in Senegal, recorded from January 2006 to December 2010. The explanatory
variables are wind speed, wind direction, air temperature and relative humidity, and the response variable is the particles concentration. The data was aggregated by day to form interval-valued variables recording
the minimum and maximum values for each day. From the microdata, Table 1, the aggregation per day allows building an interval data array, as in Table 2.

YEAR MONTH DAY HOUR MIN AIRTEMP HUMIDITY ... PARTICLES CON. YEAR MONTH DAY AIRTEMP  HUMIDITY ... PARTICLES CON.

2006 1 1 0 0 2034 1807 . a8 2006 1 1 [20.13;2034] [18.07;1830] . [23.8,95] The objectl've of this study is to pred}ct the response variable, |.}e., the partlc'les

2006 1 1 0 5 2030 18.09 . 413 2006 1 2 [20.04;212.3] [18.1;18.95] . [50.9,247.6] concentration, from the meteorological variables. However, a single regression

2006 1 1 0 10 2018 1823 . 444 . . . . . o model is often not sufficient to adequately model such relations. With the

2006 1 1 0 15 20.14 1830 . 437 . . . . . N application of a clusterwise regression model for the interval data, we expect to
. obtain better results, by considering a partition of the time periods (days).

Table 1: Classical data: A snippet of Senegal meteorological indicators Table 2: Symbolic data: Senegal data snippet after aggregation
2. The Method
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2.1 Interval Distribution (ID) regression model: Dias and Brito [3] proposed a new linear ”"( ) ?;. 4= bi)exa ,)_:1{ i+ bl )

regression method for interval-valued variables known as the Interval Distribution (ID) regression
model. In this approach, the intervals are represented by quantile functions taking into account
the distribution within them. As it is usually the case in the literature, the Uniform distribution is ~ The non-negative parameters in the model are obtained by solving a quadratic optimization problem using the
assumed within each interval. Therefore, the quantile function that represents each interval is a Mallows distance (see, e.g.,[3]), used to measure the difference between the observed and the predicted quantile

linear non-decreasing function with domain [0,1]. functions, for each unit i € {1,...,n}.
A measure Q, similar to the classical coefficient of determination, was deduced for the ID regression model:

with1 €[0,1];a;,b; >0, je{1,2,... pland ay € R.
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2.2 Clusterwise Regression: The Clusterwise Regression model proposed in this work combines the dynamic
clustering algorithm [4], with the ID regression model, considering a Uniform distribution within the intervals, in order
to identify both a partition of the data units and the relevant regression models, one for each cluster. The steps of the

2004 213 o 1 algorithm to be followed are:
AiTomp={20.04,21.3

Graphical representation of the interval [20.04, 21.3] (left) and its respective quantile function (right). S T s e el din By Grerile funsiisns

The addition of two quantile functions raises no problem since the result is always a non-decreasing Step 2: Consider an initial partition of the given units.

function. But the multiplication of a quantile function by a negative real number produces a function Step 3: Fit a regression for each cluster using the ID Model.

that is not non-decreasing, and hence cannot be a quantile function. A problem arises when we Step 4: Re-assign each unit to the cluster that provides the best fit, as

multiply a quantile function representing an interval by -1, since we obtain a function that does not measured by the squared Mallows distance.

represent an interval. The symmetric (-1) of an interval | is in fact represented by the quantile

function —¥*(1-0 , a non-decreasing function, and not by -¥(t) . Steps 3 and 4 are repeated until convergence is attained and a local minimum of the sum of squares of the errors
os (measured by the Mallows distance) is obtained (or the fixed maximum number of iterations is reached).

The process may be applied varying the number of clusters K; for each fixed K, the implemented algorithm allows for
different initial partitions, and selects the solution with lowest Total Error:
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215 The choice of a partition among the different solutions with a different number of clusters is based on evaluation
measures: the (adapted) Silhouette coefficient [5] S and the weighed coefficient of determination £ :
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Quantile representation of the interval [- 21.3 , -20.04] (blue) and symmetric of the quantile function of interval [20.04,21.3] (red). A & EAGAA] and S on
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Applying non-negativity constraints on the model would guarantee a quantile function, but that
would compel a direct linear relationship between the explanatory variables and the response where, for cachi € B
variable, a too strict limitation. To allow for both direct and inverse linear relations between the b(i) — ali) ali) = Dir[Y-:r].Y‘ii:-_l
response and the explanatory variables, Dias and Brito [3] proposed a method that considers not S(i)= - Here, and

max{a(i),b(i)}

only the quantile function that represents the interval observation of each explanatory variable but
also the quantile function that represents the respective symmetric intervlal_. Therefore, the ID
regression model allows predictine. for each unit i, the quantile function Fy ) from the linear  The final clusters and their corresponding regression models may then be used to predict target intervals for new
combination of ¥ 5ol 56 follows: observations.
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3 Results and Conclusions

The Clusterwise Regression method presented above was applied to the dataset described in Section 2 multiple times for different parameters. For each value of the number of clusters, 15 different initial partitions were analyzed.
Table 3 presents the best assessment measures received for each value of number of clusters. It was expected that the weighted coefficient of determination would rise with the number of clusters K, also it was expected that the
total error would reduce with the number of clusters K. But it is no surprise that the rise would plateau after a certain value of K, in this case 6, for which the value of the weighted Q attains 92%.
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Other Evaluation Measures

Mean Square Errors ‘ ‘

The advantages of using a clusterwise regression model is that it fits one regression model for each cluster. Each cluster seems to have its own set of relevant regressors, with different values for these regressors. This provides a lot
more flexibility than to fit a model for the entire dataset, which could dilute the effect of one specific regressor over a subset of data. In this case, with a global model we indeed obtain a worse fit, with Q = 0.5685.
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