
This work performs statistical analysis of "Big data", considering the recent approach of Symbolic Data Analysis (SDA). The practical situation under study concerns the prediction of pollution levels in Senegal from 

atmospheric variables (meteorological indicators). The large number of records leads to the need of data aggregation. A temporal aggregation (by day) is made, where to each new unit (day) corresponds the interval of 

recorded values (minimum and maximum) in a given day. The symbolic data studied in this work is therefore interval data. The objective was then to obtain symbolic regression models that allow explaining an objective 

interval-valued variable, the pollution level, as a function of explanatory interval-valued variables - the atmospheric variables. However, a single regression model is often not sufficient to adequately model the phenomenon 

under study. Thus, it was necessary to identify classes in the observed set and obtain a specific model appropriate for each class. To solve this problem, clusterwise regression for interval-valued data was developed.

1. Problem: Predicting the levels of  pollution in Senegal

The data under study consists of records of observations of atmospheric variables (meteorological indicators) and levels of pollution in Senegal, recorded from January 2006 to December 2010. The explanatory 

variables are wind speed, wind direction, air temperature and relative humidity, and the response variable is the particles concentration. The data was aggregated by day to form interval-valued variables recording 

the minimum and maximum values for each day. From the microdata, Table 1, the aggregation per day allows building an interval data array, as in Table 2.  

Table 1:  Classical data:  A snippet of Senegal meteorological indicators Table 2: Symbolic data: Senegal data snippet after aggregation

The objective of this study is to predict the response variable, i.e., the particles’ 

concentration, from the meteorological variables. However, a single regression 

model is often not sufficient to adequately model such relations. With the 

application of a clusterwise regression model for the interval data, we expect to 

obtain better results, by considering a partition of the time periods (days).

2. The Method

2.1  Interval Distribution (ID) regression model: Dias and Brito [3] proposed a new linear 

regression method for interval-valued variables known as the Interval Distribution (ID) regression 

model. In this approach, the intervals are represented by quantile functions taking into account 

the distribution within them. As it is usually the case in the literature, the Uniform distribution is 

assumed within each interval. Therefore, the quantile function that represents each interval is a 

linear non-decreasing function with domain [0,1].

Graphical representation of the interval [20.04 , 21.3] (left) and its respective quantile function (right).

The addition of two quantile functions raises no problem since the result is always a non-decreasing 

function. But the multiplication of a quantile function by a negative real number produces a function 

that is not non-decreasing, and hence cannot be a quantile function. A problem arises when we 

mul8ply a quan8le func8on represen8ng an interval by −1, since we obtain a func8on that does not 

represent an interval. The symmetric (-I) of an interval I is in fact represented by the quantile 

function                     , a non-decreasing function, and not by              .

Quantile representation of the interval [- 21.3 , -20.04] (blue) and symmetric of the quantile function of interval [20.04 , 21.3] (red).

Applying non-negativity constraints on the model would guarantee a quantile function, but that

would compel a direct linear relationship between the explanatory variables and the response

variable, a too strict limitation. To allow for both direct and inverse linear relations between the

response and the explanatory variables, Dias and Brito [3] proposed a method that considers not

only the quantile function that represents the interval observation of each explanatory variable but

also the quantile function that represents the respective symmetric interval. Therefore, the ID

regression model allows predicting, for each unit i, the quantile function from the linear

combination of and as follows:

The non-negative parameters in the model are obtained by solving a quadratic optimization problem using the 

Mallows distance (see, e.g.,[3]), used to measure the difference between the observed and the predicted quantile 

functions, for each unit i,i ∈ {1,...,n}. 

A measure Ω, similar to the classical coefficient of determination, was deduced for the ID regression model:

2.2 Clusterwise Regression:  The Clusterwise Regression model proposed in this work combines the dynamic 

clustering algorithm [4], with the ID regression model, considering a Uniform distribution within the intervals, in order 

to identify both a partition of the data units and the relevant regression models, one for each cluster. The steps of the 

algorithm to be followed are:

Step 1: Represent the interval data by quantile functions.

Step 2: Consider an initial partition of the given units.

Step 3: Fit a regression for each cluster using the ID Model.

Step 4: Re-assign each unit to the cluster that provides the best fit, as

measured by the squared Mallows distance.

Steps 3 and 4 are repeated until convergence is attained and a local minimum of the sum of squares of the errors 

(measured by the Mallows distance) is obtained (or the fixed maximum number of iterations is reached).

The process may be applied varying the number of clusters K; for each fixed K, the implemented algorithm allows for 

different initial partitions, and selects the solution with lowest Total Error:

The choice of a partition among the different solutions with a different number of clusters is based on evaluation 

measures: the (adapted) Silhouette coefficient [5] S and the weighed coefficient of determination       :

and

. Here,                        and 

The final clusters and their corresponding regression models may then be used to predict target intervals for new 

observations.

3 Results and Conclusions

The Clusterwise Regression method presented above was applied to the dataset described in Section 2 multiple times for different parameters. For each value of the number of clusters, 15 different initial partitions were analyzed. 

Table 3 presents the best assessment measures received for each value of number of clusters. It was expected that the weighted coefficient of determination would rise with the number of clusters K, also it was expected that the 

total error would reduce with the number of clusters K. But it is no surprise that the rise would plateau after a certain value of K, in this case 6, for which the value of the weighted Ω attains 92%.

The advantages of using a clusterwise regression model is that it fits one regression model for each cluster. Each cluster seems to have its own set of relevant regressors, with different values for these regressors. This provides a lot 

more flexibility than to fit a model for the entire dataset, which could dilute the effect of one specific regressor over a subset of data. In this case, with a global model we indeed obtain a worse fit, with Ω = 0.5685.

Nb. of clusters       Weighted Ω      Silhouete Coef.

2                                                 0.7709                                 0.7963

3                                                 0.8604                                 0.7187

4                                                0.9025                                 0.7052

5                                                 0.9179                                 0.6892

6                                                 0.9181                                 0.6840

7                                                0.9277                                 0.6692

8                                                 0.9323                                 0.6438

9                                                 0.9340                                 0.6717

10                                               0.9337                                 0.6679

Model evaluation measures

Cluster Nb. No. of observations

Cluster 1                                             222

Cluster 2                                             177

Cluster 3                                             312

Cluster 4                                             405

Cluster 5                                             181

Cluster 6                                             377
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2006   1          1      0        0      20.34       18.07         .      42.8

2006   1          1      0        5      20.30       18.09         .      41.3

2006 1          1      0       10     20.18       18.23         .      44.4

2006   1          1      0       15     20.14       18.30         .      43.7

.            .           .       .        .         .                .                 .       . 

.            .           .       .        .         .                .                 .       .

.            .           .       .        .         .                .                 .       .

YEAR  MONTH  DAY  HOUR  MIN  AIR TEMP  HUMIDITY  . . .  PARTICLES CON. YEAR  MONTH  DAY    AIR TEMP          HUMIDITY            . . .   PARTICLES CON.

2006 1         1     [20.13;20.34]  [18.07;18.30]   .      [23.8,95]

2006    1         2     [20.04;212.3]  [18.1;18.95]     .      [50.9,247.6]

.             .          .         .                             .                  .       . 

.             .          .         .                             .                  .       .

.             .          .         .                             .                  .       .

Number of observations in each cluster

Regression models in each cluster


