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           Ozone (O3) and nitrogen oxides (NOx) emissions can 
harm ecosystems, agriculture and public health through 
their direct and indirect effects on the air quality. Thus, the 
ability to predict future concentrations of such gases is of 
strategic importance, especially in the current climate 
changing scenario. This work presents three methods to 
predict O3 and NOx concentrations for the upcoming 24 
hours, given a sequence of past window of the same gas 
concentrations as input: a moving average, a linear 
regression and a Long short-term memory (LSTM) network 
that exhibited the best result, being able to forecast NOx 
series with an average root mean squared error (RMSE) of 
115ppb and mean absolute percentage error (MAPE) of 36% 
with respect to the ground truth series of the test set. The 
presented strategy was used to empower the 
NanoSen-AQM air quality platform.

Abstract

● Series from two datasets were used to develop and test 
the proposed methods: 
○ Averaged Nitrogen Oxides (NOx) concentrations 

recorded from March 2004 to February 2005 in 
Italy, that is part of the Air Quality Data Set 
(Devito) [5]. 

○ Ozone concentrations measured with reference 
sensors at Extremadura University campus 
(Badajoz) from September 21 to September 25 of 
2017.

● Two evaluation metrics were used to measure the 
performance of the models: root mean squared error 
(RMSE) and mean absolute percentage error (MAPE). 

● The datasets were preprocessed to delete empty rows, 
reescale the values to a range between zero and one,  
and fill missing values with the last valid observations.

Introduction

● A moving average technique and a linear regression 
model were used as baseline, then a LSTM model was 
designed to enhance the performance. 

○ A NOx series forecast model was designed as a 
neural network whereas the input sequence 
containing 72 past measurements is first 
transformed by a LSTM layer with 20 neurons 
(units) activated by a hyperbolic tangent function. 
Then by another LSTM layer with 8 rectified linear 
units and finally by an identity layer that outputs a 
sequence of 24 values that corresponds to the 
predicted future. 

● Figure 1 illustrates the architecture. The network was 
trained through 50 epochs of backpropagation using 
gradient descent algorithm and mean squared error 
(MSE) as loss function. The hyperparameters tuned at 
training were the number of hidden units and its 
activation functions. Whereas 20 and 8 hidden units 
with tanh and relu activation functions demonstrated 
to be sufficient to reach the best average results at 
training phase.

Proposed approach

● The proposed methods demonstrated reasonable 
performances, and were successfully integrated into 
the NanoSenAQM online platform. Where the baselines 
showed to be attractive for its simplicity and low 
memory consumption. 

● Methods for automatic seasonality removal should be 
considered instead of classic manual removal methods, 
since the latter would not be suitable to be 
implemented as part of the online platform.
 

● An exponential strategy may benefit the moving 
average, giving greater importance to recent 
measurements in the inputs. As well as the neural 
network, by developing an exponential smoothing 
strategy within the LSTM such as [3].
 

● The use of informative features about temperature, 
humidity, wind and other factors that have impact in 
such gases behaviors could benefit the Linear 
Regression and the LSTM methods.

 Conclusion and further work

● Gas concentrations observed at a regular interval of 
time (step) consist in a time series that can be used to 
predict future observations in a process called 
forecasting [1]. 

● The forecast aim is to estimate how the observations 
will sequence into the future.

● In this work, three methods are used to forecast hourly 
averaged NOx concentrations and two methods were 
used to forecast hourly averaged O3 concentrations. 
The number of future steps predicted was set to 24 and 
only the gas measurements were used as input to 
forecast future concentrations. 

● The proposed methods demonstrated to be simple 
enough to enable a smooth integration in the 
NanoSen-AQM online platform [4].

Experimental Setup

Figure 1: The neural network architecture with the number of 
neurons/units of each layer and its activation functions. Figure 2: The predictions of the three methods for an example from the Devito’s 

test set.

● For each example in the test set, the trained models 
were used to make a prediction as well as the moving 
average was calculated. 

● RMSE and MAPE were then calculated using the set of 
predicted values and the ground truth values of the test 
set. Obtaining the final average errors for each test set: 
Badajoz and Devito. Tables 1 and 2 summarize the 
obtained metrics for the test sets. 

● Figure 2 illustrates an example from the Devito test set 
and the predicted outputs for this example. Offering a 
visual perception of the input, expected output and 
predictions of each method. The results demonstrated 
that all the methods should be improved, especially the 
moving average, which presented much worse metrics 
than the others methods despite the sufficient visual 
perception of it’s predictions.

Results

Dataset Gas Method RMSE (ppb) MAPE (%)

Devito NOx LSTM 115.21 36

Devito NOx Linear Regression 131.34 41

Devito NOx Moving Average 215.86 84

Badajoz O3 Linear Regression 22.91 38

Badajoz O3 Moving Average 44.98 57

Table1: Results over Devito’s NOx test set and 
Badajoz’s O3 test set.
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