
CLUSTER-BASED ANCHOR BOX OPTIMISATION METHOD 
FOR DIFFERENT OBJECT DETECTION ARCHITECTURES

INTRODUCTION
Many deep learning detection architectures propose object candidates based on 
anchor boxes – bounding box templates extracted at specific locations of the 
feature map of the convolutional neural networks (CNNs) [1]. As the anchors’ 
properties determine the object shapes and scales recognized by the model, they 
must be carefully defined and adjusted to the dataset used. 

METHODOLOGY
This work presents a methodology to adjust the anchor properties to the type of 
objects existing in a specific dataset.  Clustering is used to identify the most 
representative bounding box sizes and shapes present in the dataset, which are 
mapped to the parameters of four state-of-the-art object detection CNNs.

Considering the design differences of those networks, in particular the amount of 
feature maps used for anchor extraction, this approach applies k-means clustering 
in 3 domains:

1.	Width and height dimensions: the main width/height combinations are 
directly used to define the anchor boxes in the YOLO model, and the 
average intersection over union (IoU) between the cluster centres and the 
dataset’s objects is maximized to find the optimal number of anchors.

2.	Scales: computed as the area ratio between the annotated objects and the 
input image, they establish the size of the anchors extracted in the SSD, 
Faster R-CNN and RetinaNet algorithms; the optimal number of scales is 
found by minimizing the within-cluster sum-of-squares distance, 
representative of the intra-cluster variability.

3.	Aspect ratios (ARs): obtained by dividing the bounding box widths by their 
heights, the ARs determine the main object shapes detected by the SSD, 
Faster R-CNN and RetinaNet architectures. The ARs are selected by 
simultaneously minimizing the intra-cluster variability and maximizing the 
inter-cluster separation, to ensure that the model is able to detect a 
sufficiently diverse set of object shapes

The chosen number of clusters is established considering the trade-off between 
the optimization of error metric selected and the implied computational burden 
of the model. 

RESULTS

The proposed approach was validated 
using a private dataset comprised of 
1489 microscopic images acquired from 
liquid-based cervical cytology samples of 
21 patients with a μSmartScope device 
[2]. This dataset includes 2436 bounding 
box annotations of abnormal regions 
(indicative of cervical lesions), illustrated 
in Fig. 1.

Fig 1. Image from the cervical cancer dataset 
with the bounding boxes of abnormal cells 
outlined (in red) and the information of the 
respective dimensions, scales and aspect ratios.
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The results for the tested k values are presented in Fig. 2, and the final anchor 
dimensions, scales and ARs - obtained from the coordinates of the corresponding 
cluster centers for the selected k – are included in Table 1.

Fig 2. Graphical representation of the optimised metrics according to the k value used in the experiment: (a) 
average IoU, for the width/height clustering; within-cluster sum-of-squares distance for the (b) scale and (c) 
aspect ratio values; (d) average absolute difference among the aspect ratio values in each set.

Table 1. Final anchor dimensions, scales and aspect ratios for the selected number of clusters

CONCLUSIONS AND FUTURE WORK 
This work presents a method to enable a more targeted object localisation in detection 
networks, achieved through the adjustment of the anchor boxes to the properties of 
the dataset used.  
Nonetheless, the experiments reported still correspond to exploratory work. Future 
tests should include the examination of the impact of the anchors’ setup in the final 
detection performance through the comparison of the adjusted anchor settings with 
the default ones, as well as a characterization of the computational burden yielded by 
some of the possible anchor configurations. Different clustering approaches, as well as 
more informative distance metrics for cluster validation, should also be explored.
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CLUSTERED
VARIABLE

NUMBER OF  
CLUSTERS (K)

FINAL VALUES

ANCHOR 
DIMENSIONS

9
(0.36,0.38), (0.30,0.20), (0.15,0.39), (0.19,0.19), (0.3,0.58), 

(0.30,0.29), (0.23,0.28), (0.67,0.67), (0.57,0.28)

SCALES 6 0.06, 0.13, 0.25, 0.44, 0.66, 0.91

ASPECT RATIOS 6 0.68, 1.18, 1.90, 3.63, 7.47, 14.55
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